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Abed Bounemoura

Translation on the torus

Let n ≥ 1 an integer and Tn = Rn/Zn.

A vector field U : Rn → Rn such that U(x + k) = U(x) for all k ∈ Zn

identifies to a vector field U : Tn → Rn.

A map F : Rn → Rn such that F (x + k) = F (x) + k for all k ∈ Zn

projects to a map F : Tn → Tn. Conversely, a map F : Tn → Tn lifts to
a map F : Rn → Rn such that F (x + k) = F (x) + k for all k ∈ Zn.
Lifts are not unique, but differ by some k ∈ Zn.

For α ∈ Rn, we let Tα := Id + α : Rn → Rn the translation by α:
Tα(x) = x + α. For Tα : Tn → Tn, we can also consider α ∈ Tn.

Disclaimer: everything will “live” in Rn with “periodicity conditions”
but non-trivial dynamics occur on Tn and some properties are easier to
formulate on Tn (Tn is compact with no boundary).
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Unique ergodicity of non-resonant translation

We say that α = (α1, . . . , αn) ∈ Rn is non-resonant if 1, α1, . . . , αn are
independent over Z (or over Q): for any k = (k1, . . . , kn) ∈ Zn \ {0}

k · α := k1α1 + · · · knαn /∈ Z.

For n = 1, α ∈ R is non-resonant iff α /∈ Q.

If α ∈ Rn is non-resonant, then so is α + k for any k ∈ Zn, hence the
definition makes sense for α ∈ Tn.

Lemma
The vector α ∈ Tn is non-resonant iff the translation Tα : Tn → Tn is
uniquely ergodic: it has a unique invariant Borel probability measure
(which is the Lebesgue or Haar measure m).

As a consequence, Tα is minimal: all orbits are dense. From now on, we
shall only consider α non-resonant.
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Unique ergodicity of non-resonant translation: proof

Assume α is non-resonant: let us show that a continuous function
f ∈ C 0(Tn) invariant by Tα, f ◦ Tα = f , has to be constant.

For k ∈ Zn, define the Fourier coefficient fk ∈ C by

fk :=

∫
Tn

e−2πik·x f (x)dx , f0 = [f ] =

∫
Tn

f (x)dx ,

∫
Tn

:=

∫
[0,1]n

The invariance of f gives e2πik·αfk = fk : for k 6= 0, k · α /∈ Z by the
non-resonance condition so e2πik·α 6= 1 so fk = 0.

By uniqueness of Fourier series (Fejér theorem), f = [f ] is constant.

Now replacing f (x)dx = fdm by dµ for an arbitrary invariant measure
µ, the same argument leads to µ = m.

If α is resonant, find a non-constant invariant continuous function and
thus an invariant measure different from m.
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(Inhomogeneous) Diophantine condition

For γ > 0 and τ > 0, let K τ
γ be the set of α ∈ Tn such that for all

k ∈ Zn \ {0}

|k · α|Z := inf
p∈Z
|k · α− p| ≥ γ

|k|τ , |k| := |k1|+ · · ·+ |kn|.

It is compact (possibly empty) and totally disconnected (“Cantor set”
though it may have some isolated points).

K τ
γ is empty if either γ ≥ 1/2 or τ < n (and γ small enough, this

follows from the Dirichlet box principle). Let K τ :=
⋃
γ>0 K

τ
γ . For

τ = n, K n has zero Lebesgue measure but full Hausdorff dimension.

Lemma
For τ > n, K τ has full Lebesgue measure. More precisely, there exists
C = C(τ) > 1 such that

m(Tn \ K τ
γ ) ≤ Cγ.
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Diophantine condition: proof

For k ∈ Zn \ {0}, define

Bk := {α ∈ Tn | |k · α|Z <
γ

|k|τ }

so that
Tn \ K τ

γ =
⋃

k∈Zn\{0}

Bk .

The map Ek : α ∈ Tn 7→ k · α ∈ T1 preserves Lebesgue measures (for
A ⊆ T1 measurable, mn(E−1

k (A)) = m1(A)) hence

m(Bk) ≤ 2γ

|k|τ

and therefore

m(Tn \ K τ
γ ) ≤

∑
k∈Zn\{0}

m(Bk) ≤ 2γ
∑

k∈Zn\{0}

1

|k|τ = Cγ

where C < +∞ since τ > n.



KAM normal form I

Abed Bounemoura

Diophantine condition: proof

For k ∈ Zn \ {0}, define

Bk := {α ∈ Tn | |k · α|Z <
γ

|k|τ }

so that
Tn \ K τ

γ =
⋃

k∈Zn\{0}

Bk .

The map Ek : α ∈ Tn 7→ k · α ∈ T1 preserves Lebesgue measures (for
A ⊆ T1 measurable, mn(E−1

k (A)) = m1(A)) hence

m(Bk) ≤ 2γ

|k|τ

and therefore

m(Tn \ K τ
γ ) ≤

∑
k∈Zn\{0}

m(Bk) ≤ 2γ
∑

k∈Zn\{0}

1

|k|τ = Cγ

where C < +∞ since τ > n.



KAM normal form I

Abed Bounemoura

Diophantine condition: proof

For k ∈ Zn \ {0}, define

Bk := {α ∈ Tn | |k · α|Z <
γ

|k|τ }

so that
Tn \ K τ

γ =
⋃

k∈Zn\{0}

Bk .

The map Ek : α ∈ Tn 7→ k · α ∈ T1 preserves Lebesgue measures (for
A ⊆ T1 measurable, mn(E−1

k (A)) = m1(A))

hence

m(Bk) ≤ 2γ

|k|τ

and therefore

m(Tn \ K τ
γ ) ≤

∑
k∈Zn\{0}

m(Bk) ≤ 2γ
∑

k∈Zn\{0}

1

|k|τ = Cγ

where C < +∞ since τ > n.



KAM normal form I

Abed Bounemoura

Diophantine condition: proof

For k ∈ Zn \ {0}, define

Bk := {α ∈ Tn | |k · α|Z <
γ

|k|τ }

so that
Tn \ K τ

γ =
⋃

k∈Zn\{0}

Bk .

The map Ek : α ∈ Tn 7→ k · α ∈ T1 preserves Lebesgue measures (for
A ⊆ T1 measurable, mn(E−1

k (A)) = m1(A)) hence

m(Bk) ≤ 2γ

|k|τ

and therefore

m(Tn \ K τ
γ ) ≤

∑
k∈Zn\{0}

m(Bk) ≤ 2γ
∑

k∈Zn\{0}

1

|k|τ = Cγ

where C < +∞ since τ > n.



KAM normal form I

Abed Bounemoura

Diophantine condition: proof

For k ∈ Zn \ {0}, define

Bk := {α ∈ Tn | |k · α|Z <
γ

|k|τ }

so that
Tn \ K τ

γ =
⋃

k∈Zn\{0}

Bk .

The map Ek : α ∈ Tn 7→ k · α ∈ T1 preserves Lebesgue measures (for
A ⊆ T1 measurable, mn(E−1

k (A)) = m1(A)) hence

m(Bk) ≤ 2γ

|k|τ

and therefore

m(Tn \ K τ
γ ) ≤

∑
k∈Zn\{0}

m(Bk) ≤ 2γ
∑

k∈Zn\{0}

1

|k|τ = Cγ

where C < +∞ since τ > n.



KAM normal form I

Abed Bounemoura

Diffeomorphism of the torus

Lemma
Every continuous map F : Tn → Tn has a lift of the form

F (x) = Ax + P(x), A ∈ Mn(Z), P : Tn → Rn

where A does not depend on the lift.

If F is a homeomorphism, then A ∈ GL(n,Z). We say that F is
homotopic to the identity if A = Id.

Translations are homotopic to the identity. For a homeomorphism F
homotopic to the identity, the main question is whether F can be
conjugated to Tα by a homeomorphism Φ homotopic to the identity:

Φ ◦ F ◦ Φ−1 = Tα ⇐⇒ Φ ◦ F = Tα ◦ Φ.

For n = 1, if F ∈ C 2 one can find such a Φ ∈ C 0 (Poincaré-Denjoy).
For any n ≥ 1, we shall restrict to “small” perturbation of Tα, that is
F = Tα + P where P is a “small” vector field.
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Abed Bounemoura

Conjugacy to translation: uniqueness

Lemma
Let Φ1,Φ2 : Tn → Tn homeomorphisms homotopic to the identity

Φi ◦ F = Tα ◦ Φi , i = 1, 2.

Then Φ1 − Φ2 = c is constant.

In particular, the conjugacy to a non-resonant translation is unique
upon normalization: for instance Φ = Id + U with [U] = 0.

For the proof of the lemma, let Ψ = Φ1 ◦ Φ−1
2 . Then

Ψ ◦ Tα = Tα ◦Ψ

and if we let Ψ = Id + V , the equation amounts to

V ◦ Tα − V = 0⇐⇒ V ◦ Tα = V .

Since α is non-resonant, V = [V ] = c ∈ Rn is constant. Then
Φ1 ◦ Φ−1

2 = Id + c and so Φ1 = Φ2 + c.
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Abed Bounemoura

Conjugacy to translation: questions

Consider F = Tα + P with P close to zero.

Question: Can we find U close to zero such that Φ = Id + U conjugates
F to Tα? Answer: No. Consider F = Tα+u where u ∈ Rn \ {0} close to
zero. If such a conjugacy exists, its inverse Φ−1 = Id− V solves

V − V ◦ Tα = u =⇒ [V − V ◦ Tα] = [u] =⇒ 0 = u.

Question: Can we find U and u close to zero such that Φ = Id + U
conjugates F to Tα+u? Answer: Still no. Let n = 1 for simplicity,
consider a first perturbation Tα+u = Tp/q with p/q ∈ Q, and then a
second perturbation Tq/p(x) + µsin(q2πx) for µ = µ(q) small enough.
This map has a hyperbolic q-periodic orbit at 0 and thus cannot be
conjugated to a translation.

What is true is that if α is Diophantine and F is analytic (or sufficiently
smooth), then there exists U : Tn → Rn and v ∈ Rn close to zero such
that Φ = Id + U conjugates F − v = Tα−v + P to Tα.
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KAM normal form

Theorem (Arnold)

Fix γ > 0 and τ > n. Then for any α ∈ K τ
γ and any real-analytic

P : Tn → Rn sufficiently close to zero, there exist a unique couple (U, v)
close to zero, where U : Tn → Rn is real-analytic with zero average and
v ∈ Rn, such that for F = Tα + P and Φ = Id + U, we have

Φ ◦ (F − v) ◦ Φ−1 = Tα.

Moreover, U = U(α,P) and v = v(α,P) depend
(1) smoothly on α (extend to smooth functions in α ∈ Tn)
(2) analytically in P (analytic in ε ∈ R if ε 7→ Pε is analytic)
(3) and we have the estimates

Lipθ(U) ≤ 1/2, Lipα(v) ≤ 1/2.

Beware that U and v are uniquely defined, and that the conjugacy holds
true, only for α ∈ K τ

γ !
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KAM normal form: some comments

The theorem is true for complex analytic P, in which case U and v are
complex (dependence on P is then holomorphic).

True in the analytic case with the following weaker Bruno condition
(Rüssmann, Yoccoz): |k · α|Z ≥ γ

Ψ(|k|) with∫ +∞

1

ln Ψ(t)

t2
dt < +∞

(
=⇒ lim

t→+∞

ln Ψ(t)

t
= 0

)
.

True in the smooth case with the Diophantine condition: more precisely
if P ∈ C l and l > τ + 1, then U ∈ C l−τ , l − τ /∈ N (Moser).

The KAM normal form for F = Tα + P has two main applications:
(1) If we further assume that F has a rotation vector equals to α, then
v = 0 and F is analytically conjugated to Tα
(2) If we include F into any “non-degenerate” family (FI )I∈Tn then the
set of I ∈ Tn for which FI is analytically conjugated to a Diophantine
translation has positive Lebesgue measure
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