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Let n > 1 an integer and T" = R"/Z".

A vector field U : R" — R" such that U(x + k) = U(x) for all k € Z"
identifies to a vector field U : T" — R".

A map F :R" — R" such that F(x + k) = F(x) + k for all k € Z"
projects to a map F : T" — T". Conversely, a map F : T" — T" lifts to
amap F:R" — R" such that F(x + k) = F(x) + k for all k € Z".
Lifts are not unique, but differ by some k € Z".

For o € R", we let T, :=Id + « : R” — R" the translation by a:
Ta(x) =x+a. For T, : T" — T", we can also consider o € T".

Disclaimer: everything will “live” in R" with “periodicity conditions”
but non-trivial dynamics occur on T” and some properties are easier to
formulate on T" (T" is compact with no boundary).
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We say that a = (a1, ..., an) € R" is non-resonant if 1, a1,. .., ap are
independent over Z (or over Q): for any k = (ki,...,k.) € Z"\ {0}

k-a:=koai+- - koan ¢ Z.

For n =1, a € R is non-resonant iff a ¢ Q.

If « € R" is non-resonant, then so is a + k for any k € Z", hence the
definition makes sense for v € T".

Lemma

The vector a € T" is non-resonant iff the translation T, : T" — T" is
uniquely ergodic: it has a unique invariant Borel probability measure
(which is the Lebesgue or Haar measure m).

As a consequence, T, is minimal: all orbits are dense. From now on, we
shall only consider o non-resonant.
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Assume « is non-resonant: let us show that a continuous function
f € C°(T") invariant by T,, f o T, = f, has to be constant.

For k € Z", define the Fourier coefficient fx € C by

fi ::/ e 2R (x)dx, ﬁ):[f]:/ f(x)dx, / ::/
n TII n [071]"

The invariance of f gives e2’”'k“"‘fk = fi: for k #0, k- ¢ Z by the
non-resonance condition so €™ £ 1 so f;, = 0.

By uniqueness of Fourier series (Fejér theorem), f = [f] is constant.

Now replacing f(x)dx = fdm by du for an arbitrary invariant measure
14, the same argument leads to . = m.

If « is resonant, find a non-constant invariant continuous function and
thus an invariant measure different from m.
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For v >0 and 7 > 0, let K be the set of v € T" such that for all
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For v >0 and 7 > 0, let K be the set of v € T" such that for all
kez"\ {0}
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K7 is empty if either v > 1/2 or 7 < n (and 7 small enough, this
follows from the Dirichlet box principle). Let K™ :={J ., K7. For
7 =n, K" has zero Lebesgue measure but full Hausdorff dimension.
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For v >0 and 7 > 0, let K be the set of v € T" such that for all
kez"\ {0}

2
L

lk-al|z :=inf |k-a— p| > |k| == |ki| + -+ + |kal.
PEZ

It is compact (possibly empty) and totally disconnected (“Cantor set”
though it may have some isolated points).

K7 is empty if either v > 1/2 or 7 < n (and 7 small enough, this
follows from the Dirichlet box principle). Let K™ :={J ., K7. For
7 =n, K" has zero Lebesgue measure but full Hausdorff dimension.

Lemma

For 7 > n, K™ has full Lebesgue measure. More precisely, there exists
C = C(7) > 1 such that

m(T"\ K7) < Cr.
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For k € Z" \ {0}, define
By ::{ae?l‘”| |k-0[‘z< ﬁ}

so that
T"\K; = |J B«
kezZM\ {0}

The map Ex: o € T" — k - o € T! preserves Lebesgue measures (for
A C T* measurable, m,(E, *(A)) = mi(A)) hence

2y
m(Bk) S
k|7

and therefore

mT K< S mBy<2y 3

kezm\ {0} kezm\ {0}

1
||

Cy

-

where C < 400 since 7 > n.
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Diffeomorphism of the torus

Lemma
Every continuous map F : T" — T" has a lift of the form

F(x) = Ax+ P(x), A€ M,(Z), P:T"—=R"

where A does not depend on the lift.
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homotopic to the identity if A = Id.
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Every continuous map F : T" — T" has a lift of the form

F(x) = Ax+ P(x), A€ M,(Z), P:T"—=R"
where A does not depend on the lift.

If F is a homeomorphism, then A € GL(n,Z). We say that F is
homotopic to the identity if A = Id.

Translations are homotopic to the identity.
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homotopic to the identity if A = Id.

Translations are homotopic to the identity. For a homeomorphism F
homotopic to the identity, the main question is whether F can be
conjugated to T, by a homeomorphism ® homotopic to the identity:

PoFod =T, doF=Tyo00.
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Lemma
Every continuous map F : T" — T" has a lift of the form

F(x) = Ax+ P(x), A€ M,(Z), P:T"—=R"
where A does not depend on the lift.

If F is a homeomorphism, then A € GL(n,Z). We say that F is
homotopic to the identity if A = Id.

Translations are homotopic to the identity. For a homeomorphism F
homotopic to the identity, the main question is whether F can be
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For n =1, if F € C? one can find such a ® € C° (Poincaré-Denjoy).




Diffeomorphism of the torus

Lemma
Every continuous map F : T" — T" has a lift of the form

F(x) = Ax+ P(x), A€ M,(Z), P:T"—=R"
where A does not depend on the lift.

If F is a homeomorphism, then A € GL(n,Z). We say that F is
homotopic to the identity if A = Id.

Translations are homotopic to the identity. For a homeomorphism F
homotopic to the identity, the main question is whether F can be
conjugated to T, by a homeomorphism ® homotopic to the identity:

PoFod =T, doF=Tyo00.

For n =1, if F € C? one can find such a ® € C° (Poincaré-Denjoy).
For any n > 1, we shall restrict to “small” perturbation of T,, that is
F = T, + P where P is a “small” vector field.
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Conjugacy to translation: uniqueness

Lemma
Let &1, : T" — T" homeomorphisms homotopic to the identity

GioF=Taod;, i=102.

Then ®; — &, = ¢ is constant.
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Then ®; — &, = ¢ is constant.

In particular, the conjugacy to a non-resonant translation is unique
upon normalization: for instance ® =1d + U with [U] = 0.
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VoT,=Tao0oV
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Lemma
Let &1, P, : T" — T" homeomorphisms homotopic to the identity
®ioF=Taod;, =12
Then ®; — &, = ¢ is constant.

In particular, the conjugacy to a non-resonant translation is unique
upon normalization: for instance ® =1d + U with [U] = 0.

For the proof of the lemma, let W = ®; o ¢;1. Then
VoT,=Tao0oV
and if we let ¥ = 1Id + V, the equation amounts to

VoTa,—V=0<«<=VoT,=V.
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Lemma
Let &1, : T" — T" homeomorphisms homotopic to the identity

PioF=T,0®;, i=1,2.
Then ®; — &, = ¢ is constant.

In particular, the conjugacy to a non-resonant translation is unique
upon normalization: for instance ® =1d + U with [U] = 0.

For the proof of the lemma, let W = ®; o ¢;1. Then
VoTy,=TaoW
and if we let ¥ = 1Id + V, the equation amounts to
VoTy,—-V=0<= VoT,=V.

Since a is non-resonant, V = [V] = ¢ € R” is constant.




KAM normal form |

Conjugacy to translation: uniqueness

Abed Bounemoura

Lemma
Let &1, : T" — T" homeomorphisms homotopic to the identity

PioF=T,0®;, i=1,2.
Then ®; — &, = ¢ is constant.

In particular, the conjugacy to a non-resonant translation is unique
upon normalization: for instance ® =1d + U with [U] = 0.

For the proof of the lemma, let W = ®; o ¢;1. Then
VoTy,=TaoW
and if we let ¥ = 1Id + V, the equation amounts to
VoTy,—-V=0<= VoT,=V.

Since « is non-resonant, V = [V] = ¢ € R" is constant. Then
®;0d; =1d 4 c and so ¢; = &, + c.
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Question: Can we find U close to zero such that ® = Id 4+ U conjugates
F to T.7
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Question: Can we find U close to zero such that ® = Id 4+ U conjugates
F to To? Answer: No.
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Question: Can we find U close to zero such that ® = Id 4+ U conjugates
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Question: Can we find U close to zero such that ® = Id 4+ U conjugates
F to T.? Answer: No. Consider F = T, where u € R"\ {0} close to
zero. If such a conjugacy exists, its inverse ®~! = Id — V solves

V—-VoTo=u=[V-VoT,=[u=0=u.

Question: Can we find U and u close to zero such that & =1d + U
conjugates F to To1,? Answer: Still no.
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Consider F = T,, + P with P close to zero.

Question: Can we find U close to zero such that ® = Id 4+ U conjugates
F to T.? Answer: No. Consider F = T, where u € R"\ {0} close to
zero. If such a conjugacy exists, its inverse ®~! = Id — V solves

V—-VoTo=u=[V-VoT,=[u=0=u.

Question: Can we find U and u close to zero such that & =1d + U
conjugates F to To+u? Answer: Still no. Let n =1 for simplicity,
consider a first perturbation Toyu = T, q With p/q € Q, and then a
second perturbation T,,,(x) + psin(q2nx) for p1 = pu(q) small enough.
This map has a hyperbolic g-periodic orbit at 0 and thus cannot be
conjugated to a translation.

What is true is that if « is Diophantine and F is analytic (or sufficiently
smooth), then there exists U : T" — R" and v € R" close to zero such
that & = Id 4+ U conjugates F —v = To_, + P to T,.
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Theorem (Arnold)

Fixy >0 and 7 > n. Then for any o € K] and any real-analytic

P : T" — R" sufficiently close to zero, there exist a unique couple (U, v)
close to zero, where U : T" — R" is real-analytic with zero average and
v € R”, such that for F = T, + P and ® = 1d + U, we have

do(F—v)od ' =T,.
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Fixy >0 and 7 > n. Then for any o € K] and any real-analytic

P : T" — R" sufficiently close to zero, there exist a unique couple (U, v)
close to zero, where U : T" — R" is real-analytic with zero average and
v € R”, such that for F = T, + P and ® = 1d + U, we have

do(F—v)od ' =T,.

Moreover, U = U(a, P) and v = v(«, P) depend

(1) smoothly on « (extend to smooth functions in o € T")
(2) analytically in P (analytic in € € R if e — P. is analytic)
(3) and we have the estimates

Lipy(U) < 1/2, Lip,(v) < 1/2.
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Theorem (Arnold)

Fixy >0 and 7 > n. Then for any o € K] and any real-analytic

P : T" — R" sufficiently close to zero, there exist a unique couple (U, v)
close to zero, where U : T" — R" is real-analytic with zero average and
v € R”, such that for F = T, + P and ® = 1d + U, we have

do(F—v)od ' =T,.

Moreover, U = U(a, P) and v = v(«, P) depend

(1) smoothly on « (extend to smooth functions in o € T")
(2) analytically in P (analytic in € € R if e — P. is analytic)
(3) and we have the estimates

Lipy(U) < 1/2, Lip,(v) < 1/2.

Beware that U and v are uniquely defined, and that the conjugacy holds
true, only for a € KJ!

KAM normal form |

Abed Bounemoura




KAM normal form |

KAM normal form: some comments

Abed Bounemoura




KAM normal form |

KAM normal form: some comments

Abed Bounemoura

The theorem is true for complex analytic P, in which case U and v are
complex (dependence on P is then holomorphic).
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The theorem is true for complex analytic P, in which case U and v are
complex (dependence on P is then holomorphic).

True in the analytic case with the foIIowing weaker Bruno condition
(Riissmann, Yoccoz): |k - az > (\kl with

/1+°o In:’()dt<+oo (:> lim M:0).

t—+oo t

True in the smooth case with the Diophantine condition: more precisely
if PeC'and I >7+1,then Uec C'~", | — 7 ¢ N (Moser).

The KAM normal form for F = T, + P has two main applications:

(1) If we further assume that F has a rotation vector equals to «, then
v = 0 and F is analytically conjugated to T,

(2) If we include F into any “non-degenerate” family (F;);ctn then the
set of | € T" for which F; is analytically conjugated to a Diophantine
translation has positive Lebesgue measure




