

KAM normal form I

Abed Bounemoura

CNRS-UPPA

September 19, 2025

Translation on the torus

KAM normal form I

Abed Bounemoura

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

A vector field $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $U(x + k) = U(x)$ for all $k \in \mathbb{Z}^n$ identifies to a vector field $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$.

Translation on the torus

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

A vector field $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $U(x + k) = U(x)$ for all $k \in \mathbb{Z}^n$ identifies to a vector field $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$.

A map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$ projects to a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$.

Translation on the torus

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

A vector field $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $U(x + k) = U(x)$ for all $k \in \mathbb{Z}^n$ identifies to a vector field $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$.

A map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$ projects to a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$. Conversely, a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ lifts to a map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$.

Translation on the torus

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

A vector field $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $U(x + k) = U(x)$ for all $k \in \mathbb{Z}^n$ identifies to a vector field $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$.

A map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$ projects to a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$. Conversely, a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ lifts to a map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$. Lifts are not unique, but differ by some $k \in \mathbb{Z}^n$.

Translation on the torus

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

A vector field $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $U(x + k) = U(x)$ for all $k \in \mathbb{Z}^n$ identifies to a vector field $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$.

A map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$ projects to a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$. Conversely, a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ lifts to a map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$. Lifts are not unique, but differ by some $k \in \mathbb{Z}^n$.

For $\alpha \in \mathbb{R}^n$, we let $T_\alpha := \text{Id} + \alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$ the translation by α :
 $T_\alpha(x) = x + \alpha$.

Translation on the torus

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

A vector field $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $U(x + k) = U(x)$ for all $k \in \mathbb{Z}^n$ identifies to a vector field $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$.

A map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$ projects to a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$. Conversely, a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ lifts to a map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$. Lifts are not unique, but differ by some $k \in \mathbb{Z}^n$.

For $\alpha \in \mathbb{R}^n$, we let $T_\alpha := \text{Id} + \alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$ the translation by α : $T_\alpha(x) = x + \alpha$. For $T_\alpha : \mathbb{T}^n \rightarrow \mathbb{T}^n$, we can also consider $\alpha \in \mathbb{T}^n$.

Translation on the torus

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

A vector field $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $U(x + k) = U(x)$ for all $k \in \mathbb{Z}^n$ identifies to a vector field $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$.

A map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$ projects to a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$. Conversely, a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ lifts to a map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$. Lifts are not unique, but differ by some $k \in \mathbb{Z}^n$.

For $\alpha \in \mathbb{R}^n$, we let $T_\alpha := \text{Id} + \alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$ the translation by α : $T_\alpha(x) = x + \alpha$. For $T_\alpha : \mathbb{T}^n \rightarrow \mathbb{T}^n$, we can also consider $\alpha \in \mathbb{T}^n$.

Disclaimer: everything will “live” in \mathbb{R}^n with “periodicity conditions”

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

A vector field $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $U(x + k) = U(x)$ for all $k \in \mathbb{Z}^n$ identifies to a vector field $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$.

A map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$ projects to a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$. Conversely, a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ lifts to a map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$. Lifts are not unique, but differ by some $k \in \mathbb{Z}^n$.

For $\alpha \in \mathbb{R}^n$, we let $T_\alpha := \text{Id} + \alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$ the translation by α : $T_\alpha(x) = x + \alpha$. For $T_\alpha : \mathbb{T}^n \rightarrow \mathbb{T}^n$, we can also consider $\alpha \in \mathbb{T}^n$.

Disclaimer: everything will “live” in \mathbb{R}^n with “periodicity conditions” but non-trivial dynamics occur on \mathbb{T}^n

Translation on the torus

Let $n \geq 1$ an integer and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

A vector field $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $U(x + k) = U(x)$ for all $k \in \mathbb{Z}^n$ identifies to a vector field $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$.

A map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$ projects to a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$. Conversely, a map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ lifts to a map $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $F(x + k) = F(x) + k$ for all $k \in \mathbb{Z}^n$. Lifts are not unique, but differ by some $k \in \mathbb{Z}^n$.

For $\alpha \in \mathbb{R}^n$, we let $T_\alpha := \text{Id} + \alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$ the translation by α : $T_\alpha(x) = x + \alpha$. For $T_\alpha : \mathbb{T}^n \rightarrow \mathbb{T}^n$, we can also consider $\alpha \in \mathbb{T}^n$.

Disclaimer: everything will “live” in \mathbb{R}^n with “periodicity conditions” but non-trivial dynamics occur on \mathbb{T}^n and some properties are easier to formulate on \mathbb{T}^n (\mathbb{T}^n is compact with no boundary).

Unique ergodicity of non-resonant translation

KAM normal form I

Abed Bounemoura

We say that $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ is **non-resonant** if $1, \alpha_1, \dots, \alpha_n$ are independent over \mathbb{Z} (or over \mathbb{Q}):

Unique ergodicity of non-resonant translation

We say that $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ is **non-resonant** if $1, \alpha_1, \dots, \alpha_n$ are independent over \mathbb{Z} (or over \mathbb{Q}): for any $k = (k_1, \dots, k_n) \in \mathbb{Z}^n \setminus \{0\}$

$$k \cdot \alpha := k_1\alpha_1 + \dots + k_n\alpha_n \notin \mathbb{Z}.$$

Unique ergodicity of non-resonant translation

We say that $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ is **non-resonant** if $1, \alpha_1, \dots, \alpha_n$ are independent over \mathbb{Z} (or over \mathbb{Q}): for any $k = (k_1, \dots, k_n) \in \mathbb{Z}^n \setminus \{0\}$

$$k \cdot \alpha := k_1\alpha_1 + \dots + k_n\alpha_n \notin \mathbb{Z}.$$

For $n = 1$, $\alpha \in \mathbb{R}$ is non-resonant iff $\alpha \notin \mathbb{Q}$.

We say that $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ is **non-resonant** if $1, \alpha_1, \dots, \alpha_n$ are independent over \mathbb{Z} (or over \mathbb{Q}): for any $k = (k_1, \dots, k_n) \in \mathbb{Z}^n \setminus \{0\}$

$$k \cdot \alpha := k_1\alpha_1 + \dots + k_n\alpha_n \notin \mathbb{Z}.$$

For $n = 1$, $\alpha \in \mathbb{R}$ is non-resonant iff $\alpha \notin \mathbb{Q}$.

If $\alpha \in \mathbb{R}^n$ is non-resonant, then so is $\alpha + k$ for any $k \in \mathbb{Z}^n$, hence the definition makes sense for $\alpha \in \mathbb{T}^n$.

Unique ergodicity of non-resonant translation

We say that $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ is **non-resonant** if $1, \alpha_1, \dots, \alpha_n$ are independent over \mathbb{Z} (or over \mathbb{Q}): for any $k = (k_1, \dots, k_n) \in \mathbb{Z}^n \setminus \{0\}$

$$k \cdot \alpha := k_1 \alpha_1 + \dots + k_n \alpha_n \notin \mathbb{Z}.$$

For $n = 1$, $\alpha \in \mathbb{R}$ is non-resonant iff $\alpha \notin \mathbb{Q}$.

If $\alpha \in \mathbb{R}^n$ is non-resonant, then so is $\alpha + k$ for any $k \in \mathbb{Z}^n$, hence the definition makes sense for $\alpha \in \mathbb{T}^n$.

Lemma

The vector $\alpha \in \mathbb{T}^n$ is non-resonant iff the translation $T_\alpha : \mathbb{T}^n \rightarrow \mathbb{T}^n$ is uniquely ergodic: it has a unique invariant Borel probability measure (which is the Lebesgue or Haar measure m).

Unique ergodicity of non-resonant translation

We say that $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ is **non-resonant** if $1, \alpha_1, \dots, \alpha_n$ are independent over \mathbb{Z} (or over \mathbb{Q}): for any $k = (k_1, \dots, k_n) \in \mathbb{Z}^n \setminus \{0\}$

$$k \cdot \alpha := k_1 \alpha_1 + \dots + k_n \alpha_n \notin \mathbb{Z}.$$

For $n = 1$, $\alpha \in \mathbb{R}$ is non-resonant iff $\alpha \notin \mathbb{Q}$.

If $\alpha \in \mathbb{R}^n$ is non-resonant, then so is $\alpha + k$ for any $k \in \mathbb{Z}^n$, hence the definition makes sense for $\alpha \in \mathbb{T}^n$.

Lemma

The vector $\alpha \in \mathbb{T}^n$ is non-resonant iff the translation $T_\alpha : \mathbb{T}^n \rightarrow \mathbb{T}^n$ is uniquely ergodic: it has a unique invariant Borel probability measure (which is the Lebesgue or Haar measure m).

As a consequence, T_α is **minimal**: all orbits are dense.

Unique ergodicity of non-resonant translation

We say that $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ is **non-resonant** if $1, \alpha_1, \dots, \alpha_n$ are independent over \mathbb{Z} (or over \mathbb{Q}): for any $k = (k_1, \dots, k_n) \in \mathbb{Z}^n \setminus \{0\}$

$$k \cdot \alpha := k_1 \alpha_1 + \dots + k_n \alpha_n \notin \mathbb{Z}.$$

For $n = 1$, $\alpha \in \mathbb{R}$ is non-resonant iff $\alpha \notin \mathbb{Q}$.

If $\alpha \in \mathbb{R}^n$ is non-resonant, then so is $\alpha + k$ for any $k \in \mathbb{Z}^n$, hence the definition makes sense for $\alpha \in \mathbb{T}^n$.

Lemma

The vector $\alpha \in \mathbb{T}^n$ is non-resonant iff the translation $T_\alpha : \mathbb{T}^n \rightarrow \mathbb{T}^n$ is uniquely ergodic: it has a unique invariant Borel probability measure (which is the Lebesgue or Haar measure m).

As a consequence, T_α is **minimal**: all orbits are dense. From now on, we shall only consider α non-resonant.

Unique ergodicity of non-resonant translation: proof

KAM normal form I

Abed Bounemoura

Assume α is non-resonant: let us show that a continuous function $f \in C^0(\mathbb{T}^n)$ invariant by T_α , $f \circ T_\alpha = f$, has to be constant.

Unique ergodicity of non-resonant translation: proof

Assume α is non-resonant: let us show that a continuous function $f \in C^0(\mathbb{T}^n)$ invariant by T_α , $f \circ T_\alpha = f$, has to be constant.

For $k \in \mathbb{Z}^n$, define the Fourier coefficient $f_k \in \mathbb{C}$ by

$$f_k := \int_{\mathbb{T}^n} e^{-2\pi i k \cdot x} f(x) dx, \quad f_0 = [f] = \int_{\mathbb{T}^n} f(x) dx, \quad \int_{\mathbb{T}^n} := \int_{[0,1]^n}$$

Unique ergodicity of non-resonant translation: proof

Assume α is non-resonant: let us show that a continuous function $f \in C^0(\mathbb{T}^n)$ invariant by T_α , $f \circ T_\alpha = f$, has to be constant.

For $k \in \mathbb{Z}^n$, define the Fourier coefficient $f_k \in \mathbb{C}$ by

$$f_k := \int_{\mathbb{T}^n} e^{-2\pi i k \cdot x} f(x) dx, \quad f_0 = [f] = \int_{\mathbb{T}^n} f(x) dx, \quad \int_{\mathbb{T}^n} := \int_{[0,1]^n}$$

The invariance of f gives $e^{2\pi i k \cdot \alpha} f_k = f_k$: for $k \neq 0$, $k \cdot \alpha \notin \mathbb{Z}$ by the non-resonance condition so $e^{2\pi i k \cdot \alpha} \neq 1$ so $f_k = 0$.

Assume α is non-resonant: let us show that a continuous function $f \in C^0(\mathbb{T}^n)$ invariant by T_α , $f \circ T_\alpha = f$, has to be constant.

For $k \in \mathbb{Z}^n$, define the Fourier coefficient $f_k \in \mathbb{C}$ by

$$f_k := \int_{\mathbb{T}^n} e^{-2\pi i k \cdot x} f(x) dx, \quad f_0 = [f] = \int_{\mathbb{T}^n} f(x) dx, \quad \int_{\mathbb{T}^n} := \int_{[0,1]^n}$$

The invariance of f gives $e^{2\pi i k \cdot \alpha} f_k = f_k$: for $k \neq 0$, $k \cdot \alpha \notin \mathbb{Z}$ by the non-resonance condition so $e^{2\pi i k \cdot \alpha} \neq 1$ so $f_k = 0$.

By uniqueness of Fourier series (Fejér theorem), $f = [f]$ is constant.

Assume α is non-resonant: let us show that a continuous function $f \in C^0(\mathbb{T}^n)$ invariant by T_α , $f \circ T_\alpha = f$, has to be constant.

For $k \in \mathbb{Z}^n$, define the Fourier coefficient $f_k \in \mathbb{C}$ by

$$f_k := \int_{\mathbb{T}^n} e^{-2\pi i k \cdot x} f(x) dx, \quad f_0 = [f] = \int_{\mathbb{T}^n} f(x) dx, \quad \int_{\mathbb{T}^n} := \int_{[0,1]^n}$$

The invariance of f gives $e^{2\pi i k \cdot \alpha} f_k = f_k$: for $k \neq 0$, $k \cdot \alpha \notin \mathbb{Z}$ by the non-resonance condition so $e^{2\pi i k \cdot \alpha} \neq 1$ so $f_k = 0$.

By uniqueness of Fourier series (Fejér theorem), $f = [f]$ is constant.

Now replacing $f(x)dx = f dm$ by $d\mu$ for an arbitrary invariant measure μ , the same argument leads to $\mu = m$.

Unique ergodicity of non-resonant translation: proof

Assume α is non-resonant: let us show that a continuous function $f \in C^0(\mathbb{T}^n)$ invariant by T_α , $f \circ T_\alpha = f$, has to be constant.

For $k \in \mathbb{Z}^n$, define the Fourier coefficient $f_k \in \mathbb{C}$ by

$$f_k := \int_{\mathbb{T}^n} e^{-2\pi i k \cdot x} f(x) dx, \quad f_0 = [f] = \int_{\mathbb{T}^n} f(x) dx, \quad \int_{\mathbb{T}^n} := \int_{[0,1]^n}$$

The invariance of f gives $e^{2\pi i k \cdot \alpha} f_k = f_k$: for $k \neq 0$, $k \cdot \alpha \notin \mathbb{Z}$ by the non-resonance condition so $e^{2\pi i k \cdot \alpha} \neq 1$ so $f_k = 0$.

By uniqueness of Fourier series (Fejér theorem), $f = [f]$ is constant.

Now replacing $f(x)dx = f dm$ by $d\mu$ for an arbitrary invariant measure μ , the same argument leads to $\mu = m$.

If α is resonant, find a non-constant invariant continuous function and thus an invariant measure different from m .

(Inhomogeneous) Diophantine condition

KAM normal form I

Abed Bounemoura

(Inhomogeneous) Diophantine condition

For $\gamma > 0$ and $\tau > 0$, let K_γ^τ be the set of $\alpha \in \mathbb{T}^n$ such that for all $k \in \mathbb{Z}^n \setminus \{0\}$

$$|k \cdot \alpha|_{\mathbb{Z}} := \inf_{p \in \mathbb{Z}} |k \cdot \alpha - p| \geq \frac{\gamma}{|k|^\tau}, \quad |k| := |k_1| + \cdots + |k_n|.$$

(Inhomogeneous) Diophantine condition

For $\gamma > 0$ and $\tau > 0$, let K_γ^τ be the set of $\alpha \in \mathbb{T}^n$ such that for all $k \in \mathbb{Z}^n \setminus \{0\}$

$$|k \cdot \alpha|_{\mathbb{Z}} := \inf_{p \in \mathbb{Z}} |k \cdot \alpha - p| \geq \frac{\gamma}{|k|^\tau}, \quad |k| := |k_1| + \cdots + |k_n|.$$

It is compact (possibly empty) and totally disconnected ("Cantor set" though it may have some isolated points).

(Inhomogeneous) Diophantine condition

For $\gamma > 0$ and $\tau > 0$, let K_γ^τ be the set of $\alpha \in \mathbb{T}^n$ such that for all $k \in \mathbb{Z}^n \setminus \{0\}$

$$|k \cdot \alpha|_{\mathbb{Z}} := \inf_{p \in \mathbb{Z}} |k \cdot \alpha - p| \geq \frac{\gamma}{|k|^\tau}, \quad |k| := |k_1| + \cdots + |k_n|.$$

It is compact (possibly empty) and totally disconnected ("Cantor set" though it may have some isolated points).

K_γ^τ is empty if either $\gamma \geq 1/2$

(Inhomogeneous) Diophantine condition

For $\gamma > 0$ and $\tau > 0$, let K_γ^τ be the set of $\alpha \in \mathbb{T}^n$ such that for all $k \in \mathbb{Z}^n \setminus \{0\}$

$$|k \cdot \alpha|_{\mathbb{Z}} := \inf_{p \in \mathbb{Z}} |k \cdot \alpha - p| \geq \frac{\gamma}{|k|^\tau}, \quad |k| := |k_1| + \cdots + |k_n|.$$

It is compact (possibly empty) and totally disconnected ("Cantor set" though it may have some isolated points).

K_γ^τ is empty if either $\gamma \geq 1/2$ or $\tau < n$ (and γ small enough, this follows from the Dirichlet box principle).

(Inhomogeneous) Diophantine condition

For $\gamma > 0$ and $\tau > 0$, let K_γ^τ be the set of $\alpha \in \mathbb{T}^n$ such that for all $k \in \mathbb{Z}^n \setminus \{0\}$

$$|k \cdot \alpha|_{\mathbb{Z}} := \inf_{p \in \mathbb{Z}} |k \cdot \alpha - p| \geq \frac{\gamma}{|k|^\tau}, \quad |k| := |k_1| + \cdots + |k_n|.$$

It is compact (possibly empty) and totally disconnected ("Cantor set" though it may have some isolated points).

K_γ^τ is empty if either $\gamma \geq 1/2$ or $\tau < n$ (and γ small enough, this follows from the Dirichlet box principle). Let $K^\tau := \bigcup_{\gamma > 0} K_\gamma^\tau$.

(Inhomogeneous) Diophantine condition

For $\gamma > 0$ and $\tau > 0$, let K_γ^τ be the set of $\alpha \in \mathbb{T}^n$ such that for all $k \in \mathbb{Z}^n \setminus \{0\}$

$$|k \cdot \alpha|_{\mathbb{Z}} := \inf_{p \in \mathbb{Z}} |k \cdot \alpha - p| \geq \frac{\gamma}{|k|^\tau}, \quad |k| := |k_1| + \cdots + |k_n|.$$

It is compact (possibly empty) and totally disconnected ("Cantor set" though it may have some isolated points).

K_γ^τ is empty if either $\gamma \geq 1/2$ or $\tau < n$ (and γ small enough, this follows from the Dirichlet box principle). Let $K^\tau := \bigcup_{\gamma > 0} K_\gamma^\tau$. For $\tau = n$, K^n has zero Lebesgue measure but full Hausdorff dimension.

(Inhomogeneous) Diophantine condition

For $\gamma > 0$ and $\tau > 0$, let K_γ^τ be the set of $\alpha \in \mathbb{T}^n$ such that for all $k \in \mathbb{Z}^n \setminus \{0\}$

$$|k \cdot \alpha|_{\mathbb{Z}} := \inf_{p \in \mathbb{Z}} |k \cdot \alpha - p| \geq \frac{\gamma}{|k|^\tau}, \quad |k| := |k_1| + \cdots + |k_n|.$$

It is compact (possibly empty) and totally disconnected ("Cantor set" though it may have some isolated points).

K_γ^τ is empty if either $\gamma \geq 1/2$ or $\tau < n$ (and γ small enough, this follows from the Dirichlet box principle). Let $K^\tau := \bigcup_{\gamma > 0} K_\gamma^\tau$. For $\tau = n$, K^n has zero Lebesgue measure but full Hausdorff dimension.

Lemma

For $\tau > n$, K^τ has full Lebesgue measure. More precisely, there exists $C = C(\tau) > 1$ such that

$$m(\mathbb{T}^n \setminus K_\gamma^\tau) \leq C\gamma.$$

Diophantine condition: proof

KAM normal form I

Abed Bounemoura

Diophantine condition: proof

For $k \in \mathbb{Z}^n \setminus \{0\}$, define

$$B_k := \{\alpha \in \mathbb{T}^n \mid |k \cdot \alpha|_{\mathbb{Z}} < \frac{\gamma}{|k|^\tau}\}$$

so that

$$\mathbb{T}^n \setminus K_\gamma^\tau = \bigcup_{k \in \mathbb{Z}^n \setminus \{0\}} B_k.$$

Diophantine condition: proof

For $k \in \mathbb{Z}^n \setminus \{0\}$, define

$$B_k := \{\alpha \in \mathbb{T}^n \mid |k \cdot \alpha|_{\mathbb{Z}} < \frac{\gamma}{|k|^\tau}\}$$

so that

$$\mathbb{T}^n \setminus K_\gamma^\tau = \bigcup_{k \in \mathbb{Z}^n \setminus \{0\}} B_k.$$

The map $E_k : \alpha \in \mathbb{T}^n \mapsto k \cdot \alpha \in \mathbb{T}^1$ preserves Lebesgue measures (for $A \subseteq \mathbb{T}^1$ measurable, $m_n(E_k^{-1}(A)) = m_1(A)$)

Diophantine condition: proof

For $k \in \mathbb{Z}^n \setminus \{0\}$, define

$$B_k := \{\alpha \in \mathbb{T}^n \mid |k \cdot \alpha|_{\mathbb{Z}} < \frac{\gamma}{|k|^\tau}\}$$

so that

$$\mathbb{T}^n \setminus K_\gamma^\tau = \bigcup_{k \in \mathbb{Z}^n \setminus \{0\}} B_k.$$

The map $E_k : \alpha \in \mathbb{T}^n \mapsto k \cdot \alpha \in \mathbb{T}^1$ preserves Lebesgue measures (for $A \subseteq \mathbb{T}^1$ measurable, $m_n(E_k^{-1}(A)) = m_1(A)$) hence

$$m(B_k) \leq \frac{2\gamma}{|k|^\tau}$$

Diophantine condition: proof

For $k \in \mathbb{Z}^n \setminus \{0\}$, define

$$B_k := \{\alpha \in \mathbb{T}^n \mid |k \cdot \alpha|_{\mathbb{Z}} < \frac{\gamma}{|k|^\tau}\}$$

so that

$$\mathbb{T}^n \setminus K_\gamma^\tau = \bigcup_{k \in \mathbb{Z}^n \setminus \{0\}} B_k.$$

The map $E_k : \alpha \in \mathbb{T}^n \mapsto k \cdot \alpha \in \mathbb{T}^1$ preserves Lebesgue measures (for $A \subseteq \mathbb{T}^1$ measurable, $m_n(E_k^{-1}(A)) = m_1(A)$) hence

$$m(B_k) \leq \frac{2\gamma}{|k|^\tau}$$

and therefore

$$m(\mathbb{T}^n \setminus K_\gamma^\tau) \leq \sum_{k \in \mathbb{Z}^n \setminus \{0\}} m(B_k) \leq 2\gamma \sum_{k \in \mathbb{Z}^n \setminus \{0\}} \frac{1}{|k|^\tau} = C\gamma$$

where $C < +\infty$ since $\tau > n$.

Diffeomorphism of the torus

KAM normal form I

Abed Bounemoura

Lemma

Every continuous map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ has a lift of the form

$$F(x) = Ax + P(x), \quad A \in M_n(\mathbb{Z}), \quad P : \mathbb{T}^n \rightarrow \mathbb{R}^n$$

where A does not depend on the lift.

Lemma

Every continuous map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ has a lift of the form

$$F(x) = Ax + P(x), \quad A \in M_n(\mathbb{Z}), \quad P : \mathbb{T}^n \rightarrow \mathbb{R}^n$$

where A does not depend on the lift.

If F is a homeomorphism, then $A \in GL(n, \mathbb{Z})$.

Lemma

Every continuous map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ has a lift of the form

$$F(x) = Ax + P(x), \quad A \in M_n(\mathbb{Z}), \quad P : \mathbb{T}^n \rightarrow \mathbb{R}^n$$

where A does not depend on the lift.

If F is a homeomorphism, then $A \in GL(n, \mathbb{Z})$. We say that F is homotopic to the identity if $A = \text{Id}$.

Lemma

Every continuous map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ has a lift of the form

$$F(x) = Ax + P(x), \quad A \in M_n(\mathbb{Z}), \quad P : \mathbb{T}^n \rightarrow \mathbb{R}^n$$

where A does not depend on the lift.

If F is a homeomorphism, then $A \in GL(n, \mathbb{Z})$. We say that F is homotopic to the identity if $A = \text{Id}$.

Translations are homotopic to the identity.

Lemma

Every continuous map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ has a lift of the form

$$F(x) = Ax + P(x), \quad A \in M_n(\mathbb{Z}), \quad P : \mathbb{T}^n \rightarrow \mathbb{R}^n$$

where A does not depend on the lift.

If F is a homeomorphism, then $A \in GL(n, \mathbb{Z})$. We say that F is homotopic to the identity if $A = \text{Id}$.

Translations are homotopic to the identity. For a homeomorphism F homotopic to the identity, the main question is whether F can be conjugated to T_α by a homeomorphism Φ homotopic to the identity:

$$\Phi \circ F \circ \Phi^{-1} = T_\alpha \iff \Phi \circ F = T_\alpha \circ \Phi.$$

Lemma

Every continuous map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ has a lift of the form

$$F(x) = Ax + P(x), \quad A \in M_n(\mathbb{Z}), \quad P : \mathbb{T}^n \rightarrow \mathbb{R}^n$$

where A does not depend on the lift.

If F is a homeomorphism, then $A \in GL(n, \mathbb{Z})$. We say that F is homotopic to the identity if $A = \text{Id}$.

Translations are homotopic to the identity. For a homeomorphism F homotopic to the identity, the main question is whether F can be conjugated to T_α by a homeomorphism Φ homotopic to the identity:

$$\Phi \circ F \circ \Phi^{-1} = T_\alpha \iff \Phi \circ F = T_\alpha \circ \Phi.$$

For $n = 1$, if $F \in C^2$ one can find such a $\Phi \in C^0$ (Poincaré-Denjoy).

Lemma

Every continuous map $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ has a lift of the form

$$F(x) = Ax + P(x), \quad A \in M_n(\mathbb{Z}), \quad P : \mathbb{T}^n \rightarrow \mathbb{R}^n$$

where A does not depend on the lift.

If F is a homeomorphism, then $A \in GL(n, \mathbb{Z})$. We say that F is homotopic to the identity if $A = \text{Id}$.

Translations are homotopic to the identity. For a homeomorphism F homotopic to the identity, the main question is whether F can be conjugated to T_α by a homeomorphism Φ homotopic to the identity:

$$\Phi \circ F \circ \Phi^{-1} = T_\alpha \iff \Phi \circ F = T_\alpha \circ \Phi.$$

For $n = 1$, if $F \in C^2$ one can find such a $\Phi \in C^0$ (Poincaré-Denjoy). For any $n \geq 1$, we shall restrict to “small” perturbation of T_α , that is $F = T_\alpha + P$ where P is a “small” vector field.

Conjugacy to translation: uniqueness

KAM normal form I

Abed Bounemoura

Conjugacy to translation: uniqueness

Lemma

Let $\Phi_1, \Phi_2 : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphisms homotopic to the identity

$$\Phi_i \circ F = T_\alpha \circ \Phi_i, \quad i = 1, 2.$$

Then $\Phi_1 - \Phi_2 = c$ is constant.

Lemma

Let $\Phi_1, \Phi_2 : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphisms homotopic to the identity

$$\Phi_i \circ F = T_\alpha \circ \Phi_i, \quad i = 1, 2.$$

Then $\Phi_1 - \Phi_2 = c$ is constant.

In particular, the conjugacy to a non-resonant translation is unique upon normalization: for instance $\Phi = \text{Id} + U$ with $[U] = 0$.

Conjugacy to translation: uniqueness

Lemma

Let $\Phi_1, \Phi_2 : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphisms homotopic to the identity

$$\Phi_i \circ F = T_\alpha \circ \Phi_i, \quad i = 1, 2.$$

Then $\Phi_1 - \Phi_2 = c$ is constant.

In particular, the conjugacy to a non-resonant translation is unique upon normalization: for instance $\Phi = \text{Id} + U$ with $[U] = 0$.

For the proof of the lemma, let $\Psi = \Phi_1 \circ \Phi_2^{-1}$. Then

$$\Psi \circ T_\alpha = T_\alpha \circ \Psi$$

Conjugacy to translation: uniqueness

Lemma

Let $\Phi_1, \Phi_2 : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphisms homotopic to the identity

$$\Phi_i \circ F = T_\alpha \circ \Phi_i, \quad i = 1, 2.$$

Then $\Phi_1 - \Phi_2 = c$ is constant.

In particular, the conjugacy to a non-resonant translation is unique upon normalization: for instance $\Phi = \text{Id} + U$ with $[U] = 0$.

For the proof of the lemma, let $\Psi = \Phi_1 \circ \Phi_2^{-1}$. Then

$$\Psi \circ T_\alpha = T_\alpha \circ \Psi$$

and if we let $\Psi = \text{Id} + V$, the equation amounts to

$$V \circ T_\alpha - V = 0 \iff V \circ T_\alpha = V.$$

Conjugacy to translation: uniqueness

Lemma

Let $\Phi_1, \Phi_2 : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphisms homotopic to the identity

$$\Phi_i \circ F = T_\alpha \circ \Phi_i, \quad i = 1, 2.$$

Then $\Phi_1 - \Phi_2 = c$ is constant.

In particular, the conjugacy to a non-resonant translation is unique upon normalization: for instance $\Phi = \text{Id} + U$ with $[U] = 0$.

For the proof of the lemma, let $\Psi = \Phi_1 \circ \Phi_2^{-1}$. Then

$$\Psi \circ T_\alpha = T_\alpha \circ \Psi$$

and if we let $\Psi = \text{Id} + V$, the equation amounts to

$$V \circ T_\alpha - V = 0 \iff V \circ T_\alpha = V.$$

Since α is non-resonant, $V = [V] = c \in \mathbb{R}^n$ is constant.

Conjugacy to translation: uniqueness

Lemma

Let $\Phi_1, \Phi_2 : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphisms homotopic to the identity

$$\Phi_i \circ F = T_\alpha \circ \Phi_i, \quad i = 1, 2.$$

Then $\Phi_1 - \Phi_2 = c$ is constant.

In particular, the conjugacy to a non-resonant translation is unique upon normalization: for instance $\Phi = \text{Id} + U$ with $[U] = 0$.

For the proof of the lemma, let $\Psi = \Phi_1 \circ \Phi_2^{-1}$. Then

$$\Psi \circ T_\alpha = T_\alpha \circ \Psi$$

and if we let $\Psi = \text{Id} + V$, the equation amounts to

$$V \circ T_\alpha - V = 0 \iff V \circ T_\alpha = V.$$

Since α is non-resonant, $V = [V] = c \in \mathbb{R}^n$ is constant. Then $\Phi_1 \circ \Phi_2^{-1} = \text{Id} + c$ and so $\Phi_1 = \Phi_2 + c$.

Conjugacy to translation: questions

KAM normal form I

Abed Bounemoura

Consider $F = T_\alpha + P$ with P close to zero.

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ?

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ? Answer: No.

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ? Answer: No. Consider $F = T_{\alpha+u}$ where $u \in \mathbb{R}^n \setminus \{0\}$ close to zero.

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ? Answer: No. Consider $F = T_{\alpha+u}$ where $u \in \mathbb{R}^n \setminus \{0\}$ close to zero. If such a conjugacy exists, its inverse $\Phi^{-1} = \text{Id} - V$ solves

$$V - V \circ T_\alpha = u \implies [V - V \circ T_\alpha] = [u] \implies 0 = u.$$

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ? Answer: No. Consider $F = T_{\alpha+u}$ where $u \in \mathbb{R}^n \setminus \{0\}$ close to zero. If such a conjugacy exists, its inverse $\Phi^{-1} = \text{Id} - V$ solves

$$V - V \circ T_\alpha = u \implies [V - V \circ T_\alpha] = [u] \implies 0 = u.$$

Question: Can we find U and u close to zero such that $\Phi = \text{Id} + U$ conjugates F to $T_{\alpha+u}$?

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ? Answer: No. Consider $F = T_{\alpha+u}$ where $u \in \mathbb{R}^n \setminus \{0\}$ close to zero. If such a conjugacy exists, its inverse $\Phi^{-1} = \text{Id} - V$ solves

$$V - V \circ T_\alpha = u \implies [V - V \circ T_\alpha] = [u] \implies 0 = u.$$

Question: Can we find U and u close to zero such that $\Phi = \text{Id} + U$ conjugates F to $T_{\alpha+u}$? Answer: Still no.

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ? Answer: No. Consider $F = T_{\alpha+u}$ where $u \in \mathbb{R}^n \setminus \{0\}$ close to zero. If such a conjugacy exists, its inverse $\Phi^{-1} = \text{Id} - V$ solves

$$V - V \circ T_\alpha = u \implies [V - V \circ T_\alpha] = [u] \implies 0 = u.$$

Question: Can we find U and u close to zero such that $\Phi = \text{Id} + U$ conjugates F to $T_{\alpha+u}$? Answer: Still no. Let $n = 1$ for simplicity, consider a first perturbation $T_{\alpha+u} = T_{p/q}$ with $p/q \in \mathbb{Q}$,

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ? Answer: No. Consider $F = T_{\alpha+u}$ where $u \in \mathbb{R}^n \setminus \{0\}$ close to zero. If such a conjugacy exists, its inverse $\Phi^{-1} = \text{Id} - V$ solves

$$V - V \circ T_\alpha = u \implies [V - V \circ T_\alpha] = [u] \implies 0 = u.$$

Question: Can we find U and u close to zero such that $\Phi = \text{Id} + U$ conjugates F to $T_{\alpha+u}$? Answer: Still no. Let $n = 1$ for simplicity, consider a first perturbation $T_{\alpha+u} = T_{p/q}$ with $p/q \in \mathbb{Q}$, and then a second perturbation $T_{q/p}(x) + \mu \sin(q2\pi x)$ for $\mu = \mu(q)$ small enough.

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ? Answer: No. Consider $F = T_{\alpha+u}$ where $u \in \mathbb{R}^n \setminus \{0\}$ close to zero. If such a conjugacy exists, its inverse $\Phi^{-1} = \text{Id} - V$ solves

$$V - V \circ T_\alpha = u \implies [V - V \circ T_\alpha] = [u] \implies 0 = u.$$

Question: Can we find U and u close to zero such that $\Phi = \text{Id} + U$ conjugates F to $T_{\alpha+u}$? Answer: Still no. Let $n = 1$ for simplicity, consider a first perturbation $T_{\alpha+u} = T_{p/q}$ with $p/q \in \mathbb{Q}$, and then a second perturbation $T_{q/p}(x) + \mu \sin(q2\pi x)$ for $\mu = \mu(q)$ small enough. This map has a hyperbolic q -periodic orbit at 0 and thus cannot be conjugated to a translation.

Conjugacy to translation: questions

Consider $F = T_\alpha + P$ with P close to zero.

Question: Can we find U close to zero such that $\Phi = \text{Id} + U$ conjugates F to T_α ? Answer: No. Consider $F = T_{\alpha+u}$ where $u \in \mathbb{R}^n \setminus \{0\}$ close to zero. If such a conjugacy exists, its inverse $\Phi^{-1} = \text{Id} - V$ solves

$$V - V \circ T_\alpha = u \implies [V - V \circ T_\alpha] = [u] \implies 0 = u.$$

Question: Can we find U and u close to zero such that $\Phi = \text{Id} + U$ conjugates F to $T_{\alpha+u}$? Answer: Still no. Let $n = 1$ for simplicity, consider a first perturbation $T_{\alpha+u} = T_{p/q}$ with $p/q \in \mathbb{Q}$, and then a second perturbation $T_{q/p}(x) + \mu \sin(q2\pi x)$ for $\mu = \mu(q)$ small enough. This map has a hyperbolic q -periodic orbit at 0 and thus cannot be conjugated to a translation.

What is true is that if α is Diophantine and F is analytic (or sufficiently smooth), then there exists $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ and $v \in \mathbb{R}^n$ close to zero such that $\Phi = \text{Id} + U$ conjugates $F - v = T_{\alpha-v} + P$ to T_α .

KAM normal form I

KAM normal form I

Abed Bounemoura

Theorem (Arnold)

Fix $\gamma > 0$ and $\tau > n$. Then for any $\alpha \in K_\gamma^\tau$ and any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ sufficiently close to zero, there exist a unique couple (U, v) close to zero, where $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is real-analytic with zero average and $v \in \mathbb{R}^n$, such that for $F = T_\alpha + P$ and $\Phi = \text{Id} + U$, we have

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Theorem (Arnold)

Fix $\gamma > 0$ and $\tau > n$. Then for any $\alpha \in K_\gamma^\tau$ and any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ sufficiently close to zero, there exist a unique couple (U, v) close to zero, where $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is real-analytic with zero average and $v \in \mathbb{R}^n$, such that for $F = T_\alpha + P$ and $\Phi = \text{Id} + U$, we have

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Moreover, $U = U(\alpha, P)$ and $v = v(\alpha, P)$ depend

Theorem (Arnold)

Fix $\gamma > 0$ and $\tau > n$. Then for any $\alpha \in K_\gamma^\tau$ and any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ sufficiently close to zero, there exist a unique couple (U, v) close to zero, where $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is real-analytic with zero average and $v \in \mathbb{R}^n$, such that for $F = T_\alpha + P$ and $\Phi = \text{Id} + U$, we have

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Moreover, $U = U(\alpha, P)$ and $v = v(\alpha, P)$ depend

(1) smoothly on α (extend to smooth functions in $\alpha \in \mathbb{T}^n$)

Theorem (Arnold)

Fix $\gamma > 0$ and $\tau > n$. Then for any $\alpha \in K_\gamma^\tau$ and any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ sufficiently close to zero, there exist a unique couple (U, v) close to zero, where $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is real-analytic with zero average and $v \in \mathbb{R}^n$, such that for $F = T_\alpha + P$ and $\Phi = \text{Id} + U$, we have

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Moreover, $U = U(\alpha, P)$ and $v = v(\alpha, P)$ depend

- (1) smoothly on α (extend to smooth functions in $\alpha \in \mathbb{T}^n$)
- (2) analytically in P (analytic in $\varepsilon \in \mathbb{R}$ if $\varepsilon \mapsto P_\varepsilon$ is analytic)

Theorem (Arnold)

Fix $\gamma > 0$ and $\tau > n$. Then for any $\alpha \in K_\gamma^\tau$ and any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ sufficiently close to zero, there exist a unique couple (U, v) close to zero, where $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is real-analytic with zero average and $v \in \mathbb{R}^n$, such that for $F = T_\alpha + P$ and $\Phi = \text{Id} + U$, we have

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Moreover, $U = U(\alpha, P)$ and $v = v(\alpha, P)$ depend

- (1) smoothly on α (extend to smooth functions in $\alpha \in \mathbb{T}^n$)
- (2) analytically in P (analytic in $\varepsilon \in \mathbb{R}$ if $\varepsilon \mapsto P_\varepsilon$ is analytic)
- (3) and we have the estimates

$$\text{Lip}_\theta(U) \leq 1/2, \quad \text{Lip}_\alpha(v) \leq 1/2.$$

Theorem (Arnold)

Fix $\gamma > 0$ and $\tau > n$. Then for any $\alpha \in K_\gamma^\tau$ and any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ sufficiently close to zero, there exist a unique couple (U, v) close to zero, where $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is real-analytic with zero average and $v \in \mathbb{R}^n$, such that for $F = T_\alpha + P$ and $\Phi = \text{Id} + U$, we have

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Moreover, $U = U(\alpha, P)$ and $v = v(\alpha, P)$ depend

- (1) smoothly on α (extend to smooth functions in $\alpha \in \mathbb{T}^n$)
- (2) analytically in P (analytic in $\varepsilon \in \mathbb{R}$ if $\varepsilon \mapsto P_\varepsilon$ is analytic)
- (3) and we have the estimates

$$\text{Lip}_\theta(U) \leq 1/2, \quad \text{Lip}_\alpha(v) \leq 1/2.$$

Beware that U and v are uniquely defined, and that the conjugacy holds true, only for $\alpha \in K_\gamma^\tau$!

KAM normal form: some comments

KAM normal form I

Abed Bounemoura

The theorem is true for complex analytic P , in which case U and v are complex (dependence on P is then holomorphic).

KAM normal form: some comments

The theorem is true for complex analytic P , in which case U and v are complex (dependence on P is then holomorphic).

True in the analytic case with the following weaker Bruno condition
(Rüssmann, Yoccoz): $|k \cdot \alpha|_{\mathbb{Z}} \geq \frac{\gamma}{\Psi(|k|)}$ with

$$\int_1^{+\infty} \frac{\ln \Psi(t)}{t^2} dt < +\infty \quad \left(\Rightarrow \lim_{t \rightarrow +\infty} \frac{\ln \Psi(t)}{t} = 0 \right).$$

KAM normal form: some comments

The theorem is true for complex analytic P , in which case U and v are complex (dependence on P is then holomorphic).

True in the analytic case with the following weaker Bruno condition (Rüssmann, Yoccoz): $|k \cdot \alpha|_{\mathbb{Z}} \geq \frac{\gamma}{\Psi(|k|)}$ with

$$\int_1^{+\infty} \frac{\ln \Psi(t)}{t^2} dt < +\infty \quad \left(\Rightarrow \lim_{t \rightarrow +\infty} \frac{\ln \Psi(t)}{t} = 0 \right).$$

True in the smooth case with the Diophantine condition: more precisely if $P \in C^l$ and $l > \tau + 1$, then $U \in C^{l-\tau}$, $l - \tau \notin \mathbb{N}$ (Moser).

KAM normal form: some comments

The theorem is true for complex analytic P , in which case U and v are complex (dependence on P is then holomorphic).

True in the analytic case with the following weaker Bruno condition (Rüssmann, Yoccoz): $|k \cdot \alpha|_{\mathbb{Z}} \geq \frac{\gamma}{\Psi(|k|)}$ with

$$\int_1^{+\infty} \frac{\ln \Psi(t)}{t^2} dt < +\infty \quad \left(\Rightarrow \lim_{t \rightarrow +\infty} \frac{\ln \Psi(t)}{t} = 0 \right).$$

True in the smooth case with the Diophantine condition: more precisely if $P \in C^l$ and $l > \tau + 1$, then $U \in C^{l-\tau}$, $l - \tau \notin \mathbb{N}$ (Moser).

The KAM normal form for $F = T_\alpha + P$ has two main applications:

KAM normal form: some comments

The theorem is true for complex analytic P , in which case U and v are complex (dependence on P is then holomorphic).

True in the analytic case with the following weaker Bruno condition (Rüssmann, Yoccoz): $|k \cdot \alpha|_{\mathbb{Z}} \geq \frac{\gamma}{\Psi(|k|)}$ with

$$\int_1^{+\infty} \frac{\ln \Psi(t)}{t^2} dt < +\infty \quad \left(\Rightarrow \lim_{t \rightarrow +\infty} \frac{\ln \Psi(t)}{t} = 0 \right).$$

True in the smooth case with the Diophantine condition: more precisely if $P \in C^l$ and $l > \tau + 1$, then $U \in C^{l-\tau}$, $l - \tau \notin \mathbb{N}$ (Moser).

The KAM normal form for $F = T_\alpha + P$ has two main applications:

(1) If we further assume that F has a rotation vector equals to α , then $v = 0$ and F is analytically conjugated to T_α

KAM normal form: some comments

The theorem is true for complex analytic P , in which case U and v are complex (dependence on P is then holomorphic).

True in the analytic case with the following weaker Bruno condition (Rüssmann, Yoccoz): $|k \cdot \alpha|_{\mathbb{Z}} \geq \frac{\gamma}{\Psi(|k|)}$ with

$$\int_1^{+\infty} \frac{\ln \Psi(t)}{t^2} dt < +\infty \quad \left(\Rightarrow \lim_{t \rightarrow +\infty} \frac{\ln \Psi(t)}{t} = 0 \right).$$

True in the smooth case with the Diophantine condition: more precisely if $P \in C^l$ and $l > \tau + 1$, then $U \in C^{l-\tau}$, $l - \tau \notin \mathbb{N}$ (Moser).

The KAM normal form for $F = T_\alpha + P$ has two main applications:

- (1) If we further assume that F has a rotation vector equals to α , then $v = 0$ and F is analytically conjugated to T_α
- (2) If we include F into any “non-degenerate” family $(F_I)_{I \in \mathbb{T}^n}$ then the set of $I \in \mathbb{T}^n$ for which F_I is analytically conjugated to a Diophantine translation has positive Lebesgue measure