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Theorem (Arnold)

Fixy >0 and 7 > n. Then for any o € K] and any real-analytic

P : T" — R" sufficiently close to zero, there exist a unique couple (U, v)
close to zero, where U : T" — R" is real-analytic with zero average and
v € R”, such that for F = T, + P and ® = 1d + U, we have

do(F—v)od ' =T,.

Moreover, U = U(a, P) and v = v(«, P) depend

(1) smoothly on « (extend to smooth functions in o € T")
(2) analytically in P (analytic in € € R if e — P. is analytic)
(3) and we have the estimates

Lipg(U) < 1/2, Lip,(u) < 1/2.

Beware that U and v are uniquely defined, and that the conjugacy holds
true, only for a € KJ!
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Let F: T" — T" homeomorphism homotopic to the identity, M(F) # 0
the set of its invariant Borel probability measures.
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Rigidity of Diophantine translation
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Let F: T" — T" homeomorphism homotopic to the identity, M(F) # 0

the set of its invariant Borel probability measures. For € M(F),
define its rotation vector p(F) € T" and the rotation set Rot(F) C T"

wu(F) = /Tn(F—Id)du mod Z", Rot(F):={u(F)eT" | ne€ M(F)}.
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Let F: T" — T" homeomorphism homotopic to the identity, M(F) # 0
the set of its invariant Borel probability measures. For € M(F),
define its rotation vector p(F) € T" and the rotation set Rot(F) C T"

wu(F) = /Tn(F—Id)du mod Z", Rot(F):={u(F)eT" | ne€ M(F)}.

If u is ergodic, then p-ae by the Birkhoff ergodic theorem we have:

. F'(x)—x "
Jm oy P eRY
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Let F: T" — T" homeomorphism homotopic to the identity, M(F) # 0
the set of its invariant Borel probability measures. For € M(F),
define its rotation vector p(F) € T" and the rotation set Rot(F) C T"

wu(F) = /Tn(F—Id)du mod Z", Rot(F):={u(F)eT" | ne€ M(F)}.

If u is ergodic, then p-ae by the Birkhoff ergodic theorem we have:

. F'(x)—x "
Jm e T M) ERY

For n =1, Rot(F) = {p(F)} and sup,cy |F" —Id — np(F)|co < 4o0.
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Let F: T" — T" homeomorphism homotopic to the identity, M(F) # 0
the set of its invariant Borel probability measures. For € M(F),
define its rotation vector p(F) € T" and the rotation set Rot(F) C T"

wu(F) = /Tn(F—Id)du mod Z", Rot(F):={u(F)eT" | ne€ M(F)}.

If u is ergodic, then p-ae by the Birkhoff ergodic theorem we have:

. F'(x)—x "
Jm oy P eRY

For n =1, Rot(F) = {p(F)} and sup,cy |F" —Id — np(F)|co < 4o0.

The rotation set is invariant by conjugacy: if F, = ® o Fo®~! and
w € M(F), then p, = & € M(F.) and p(F) = p«(Fs).
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Let F: T" — T" homeomorphism homotopic to the identity, M(F) # 0
the set of its invariant Borel probability measures. For € M(F),
define its rotation vector p(F) € T" and the rotation set Rot(F) C T"

wu(F) = /Tn(F—Id)du mod Z", Rot(F):={u(F)eT" | ne€ M(F)}.

If u is ergodic, then p-ae by the Birkhoff ergodic theorem we have:

. F'(x)—x "
Jm oy P eRY

For n =1, Rot(F) = {p(F)} and sup,cy |F" —Id — np(F)|co < 4o0.

The rotation set is invariant by conjugacy: if F, = ® o Fo®~! and
w € M(F), then p, = & € M(F.) and p(F) = p«(Fs).

Corollary 1

Under the assumptions of the theorem, assume further that o € Rot(F).
Then v = v(F) =0, that is F is analytically conjugated to T,.
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For F = T, + P, we have v € R" and ® = Id + U such that

Po(F—v)od '=T,.
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For F = To + P, we have v € R" and ® = Id 4 U such that
bo(F—v)od ' =T,.
Let F, =® o Fo® !, then

F.=Td4+a+v+X, X=Uo(Fod )—Uo(Fod '—v).
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For F= T, + P, we have v € R" and ® = Id + U such that
Po(F—v)od '=T,.
Let F, =do Fod™ !, then
F.=Id+a+v+X, X:= Uo(Fo¢71)— Uo(Fod>71— v).

By assumption, « € Rot(F) = Rot(F.), and let p. such that
ps(Fe) = a.
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Rigidity of Diophantine translation: proof
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For F= T, + P, we have v € R" and ® = Id + U such that
Po(F—v)od '=T,.
Let F, =do Fod™ !, then
F.=Id+a+v+X, X:= Uo(Fo¢71)— Uo(Fod>71— v).

By assumption, « € Rot(F) = Rot(F.), and let p. such that
ps(Fe) = a.

(Fi —Id)dpx =a <= v=— Xdp. € R".

T T
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For F= T, + P, we have v € R" and ® = Id + U such that
Po(F—v)od '=T,.
Let F, =do Fod™ !, then
F.=Id+a+v+X, X:= Uo(Fo¢71)— Uo(Fod>71— v).

By assumption, « € Rot(F) = Rot(F.), and let p. such that
ps(Fe) = a.

(Fi —Id)dpx =a <= v=— Xdp. € R".
T i

Taking the supremum norm on T” this gives

v < sup IX(6)| < Lip(U)|v| < |vl/2.

Hence v = 0.
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Arnold family of torus maps

Fix ag € K7, P : T" — R" real-analytic and consider the following
“deformation” of F. = Ty +eP, c € R:

0eT" — F(0)+1=0+ac+1+P(O) eT"

where | € T" are parameters.
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Fix ag € K7, P : T" — R" real-analytic and consider the following
“deformation” of F. = Ty +eP, c € R:

0eT" — F(0)+1=0+ac+1+P(O) eT"
where | € T" are parameters. Translating parameters, consider

A0 €T+ 0+1+eP(0) €T
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Fix ag € K7, P : T" — R" real-analytic and consider the following
“deformation” of F. = Ty +eP, c € R:

0eT" — F(0)+1=0+ac+1+P(O) eT"
where | € T" are parameters. Translating parameters, consider

A0 €T+ 0+1+eP(0) €T

Corollary 2 (Arnold)

There exists eo = €o(, 7, P) > 0 and C = C(7) > 1 such that for all
le| < eo, if K . is the set of | € T" such that A, is analytically
conjugated to T, for some o € K, then

m (w \ Kﬁs) < .
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Arnold family of torus maps
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Fix ag € K7, P : T" — R" real-analytic and consider the following
“deformation” of F. = Ty +eP, c € R:

0eT" — F(0)+1=0+ac+1+P(O) eT"
where | € T" are parameters. Translating parameters, consider

A0 €T+ 0+1+eP(0) €T

Corollary 2 (Arnold)
There exists eo = €o(, 7, P) > 0 and C = C(7) > 1 such that for all

le| < eo, if K . is the set of | € T" such that A, is analytically

conjugated to T, for some o € K, then
m ('Jl‘” \ k;,s) < Gy,

We will see that g9 = ¢(7, P)y = ¢y for some ¢ < 1, so choosing
v =¢/c we have m (T"\ NET/C’E < Ce/c for € small enough.
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Corollary 2 holds true if we replace / — [ in the definition of A;. by a
local C*-diffeomorphism I € R” — w(/) € R" (“unperturbed frequency
map”), provided g9 = £o(7, T, P,w).
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Corollary 2 holds true if we replace / — [ in the definition of A;. by a
local C*-diffeomorphism I € R” — w(/) € R" (“unperturbed frequency
map”), provided g9 = £o(7, T, P,w).

Also true under weaker non-degeneracy: | € RY for some d > 1 and
w:R? — R"is “curved”: all partial derivatives of w of order > 1
generate R" (Riissmann). This requires smoothness of o — v(a,€).
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Corollary 2 holds true if we replace / — [ in the definition of A;. by a
local C*-diffeomorphism I € R” — w(/) € R" (“unperturbed frequency
map”), provided g9 = £o(7, T, P,w).

Also true under weaker non-degeneracy: | € RY for some d > 1 and

w:R? — R"is “curved”: all partial derivatives of w of order > 1
generate R" (Riissmann). This requires smoothness of o — v(a,€).

Let P. an analytic family in € € R" with Py = 0 and consider

Hoge : 0 €T — 0+ ag+ P-(0) € T".
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Abed Bounemoura

Corollary 2 holds true if we replace / — [ in the definition of A;. by a
local C*-diffeomorphism I € R” — w(/) € R" (“unperturbed frequency
map”), provided g9 = £o(7, T, P,w).

Also true under weaker non-degeneracy: | € RY for some d > 1 and
w:R? — R"is “curved”: all partial derivatives of w of order > 1
generate R" (Riissmann). This requires smoothness of o — v(a,€).

Let P. an analytic family in € € R" with Py = 0 and consider
Hoge : 0 €T — 0+ ag+ P-(0) € T".

For n =1, € =0 is a density point of the the set of € for which Hy,.c is
analytically conjugated to translation. This requires analyticity of
e v(a,e).
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Family of torus maps: some comments
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Corollary 2 holds true if we replace / — [ in the definition of A;. by a
local C*-diffeomorphism I € R” — w(/) € R" (“unperturbed frequency
map”), provided g9 = £o(7, T, P,w).

Also true under weaker non-degeneracy: | € RY for some d > 1 and
w:R? — R"is “curved”: all partial derivatives of w of order > 1
generate R" (Riissmann). This requires smoothness of o — v(a,€).

Let P. an analytic family in € € R" with Py = 0 and consider
Hoge : 0 €T — 0+ ag+ P-(0) € T".

For n =1, € =0 is a density point of the the set of € for which Hy,.c is
analytically conjugated to translation. This requires analyticity of
e +— v(a, ). For n > 2 nothing is known.
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Let (E, d) be a metric space, a map u: E — R" is Lipschitz if

Lip(u) :=sup lu(h) = u(I)] < 4o0.

1z d(L 1)




Lipschitz maps

Let (E, d) be a metric space, a map u: E — R" is Lipschitz if

lu(!) — uf

Lip(u) :=sup ol < +o0.

1z d(L 1)

For Iy € E, the map | € E — d(I, k) € R is 1-Lipschitz.
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Lipschitz maps
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Let (E, d) be a metric space, a map u: E — R" is Lipschitz if

lu(!) — uf

Lip(u) :=sup ol < +o0.

1z d(L 1)

For Iy € E, the map | € E — d(I, k) € R is 1-Lipschitz. If K C E, then
I € E s d(I,K) = infrex d(I, bo) € R is 1-Lipschitz.
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Let (E, d) be a metric space, a map u: E — R" is Lipschitz if

lu(!) — uf

Lip(u) :=sup ol < +o0.

1z d(L 1)
For Iy € E, the map | € E — d(I, k) € R is 1-Lipschitz. If K C E, then
I € E— d(l,K)=infyex d(/, ) € R is 1-Lipschitz. More generally,
let K be any set, vo : E — R for & € K and assume that Lip(v,) < L.
If v(/) := infaek va(l) is finite at one point, then Lip(v) < L.
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Let (E, d) be a metric space, a map u: E — R" is Lipschitz if

lu(!) — uf

Lip(u) :=sup ol < +o0.

1z d(L 1)
For Iy € E, the map | € E — d(I, k) € R is 1-Lipschitz. If K C E, then
I € E— d(l,K)=infyex d(/, ) € R is 1-Lipschitz. More generally,
let K be any set, vo : E — R for & € K and assume that Lip(v,) < L.
If v(/) := infaek va(l) is finite at one point, then Lip(v) < L.

If v :T" — R"is C!, since R” is convex we have

Lip(v) = IseuTe |Dv(l)| :=sup sup |Dv(l)e| = IseuTF: Z |0'v(1)].

n _
IET e€Rn, |e|=1 =




Lipschitz maps

Let (E, d) be a metric space, a map u: E — R" is Lipschitz if

lu(!) — uf

Lip(u) :=sup ol < +o0.

1z d(L 1)

For Iy € E, the map | € E — d(I, k) € R is 1-Lipschitz. If K C E, then
I € E— d(l,K)=infyex d(/, ) € R is 1-Lipschitz. More generally,
let K be any set, vo : E — R for & € K and assume that Lip(v,) < L.
If v(/) := infaek va(l) is finite at one point, then Lip(v) < L.

If v :T" — R"is C!, since R” is convex we have

Lip(v) = IseuTe |Dv(l)| :=sup sup |Dv(l)e| = IseuTF: Z |0'v(1)].

n _
IET e€Rn, |e|=1 =

Lip(vi + v») < Lip(v1) + Lip(w2)
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Lipschitz maps

Let (E, d) be a metric space, a map u: E — R" is Lipschitz if

lu(!) — uf

Lip(u) :=sup ol < +o0.

1z d(L 1)
For Iy € E, the map | € E — d(I, k) € R is 1-Lipschitz. If K C E, then
I € E— d(l,K)=infyex d(/, ) € R is 1-Lipschitz. More generally,
let K be any set, vo : E — R for & € K and assume that Lip(v,) < L.
If v(/) := infaek va(l) is finite at one point, then Lip(v) < L.

If v :T" — R"is C!, since R” is convex we have

Lip(v) = IseuTe |Dv(l)| :=sup sup |Dv(l)e| = IseuTF: Z |0'v(1)].

n _
IET e€Rn, |e|=1 =

Lip(v1 + v2) < Lip(v1) + Lip(v2)
Lip(v1 o (Id 4+ wv2)) < Lip(v1)(1 + Lip(v2)).
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Lipschitz maps: extension
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Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).
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Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).

Proof.
It suffices to extend each component of v, hence we assume v : K — R.
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Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).

Proof.
It suffices to extend each component of v, hence we assume v : K — R.
Let L = Lip(v), for « € K, define ¥, : E - R, ¥ : E > R

Ua(l) == v(a) + Ld(l,a), V(1) = 0121; Oa ().




KAM normal form Il

Lipschitz maps: extension

Abed Bounemoura

Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).

Proof.
It suffices to extend each component of v, hence we assume v : K — R.
Let L = Lip(v), for « € K, define ¥, : E - R, ¥ : E > R

Ua(l) == v(a) + Ld(l,a), V(1) = 0121; Oa ().

Obviously Lip(¥s) = L for any o € K
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Lipschitz maps: extension
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Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).

Proof.
It suffices to extend each component of v, hence we assume v : K — R.
Let L = Lip(v), for « € K, define ¥, : E - R, ¥ : E > R

Ua(l) == v(a) + Ld(l,a), V(1) = 0121; Oa ().

Obviously Lip(¥s) = L for any o € K hence Lip(?) = L provided ¥ is
finite at one point.
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Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).

Proof.
It suffices to extend each component of v, hence we assume v : K — R.
Let L = Lip(v), for « € K, define ¥, : E - R, ¥ : E > R

Ua(l) == v(a) + Ld(l,a), V(1) = 0121; Oa ().

Obviously Lip(¥s) = L for any o € K hence Lip(?) = L provided ¥ is
finite at one point. Hence it suffices to show that ¥ extends v.
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Lipschitz maps: extension
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Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).

Proof.
It suffices to extend each component of v, hence we assume v : K — R.
Let L = Lip(v), for « € K, define ¥, : E - R, ¥ : E > R

Ua(l) == v(a) + Ld(l,a), V(1) = 0121; Oa ().

Obviously Lip(¥s) = L for any o € K hence Lip(?) = L provided ¥ is
finite at one point. Hence it suffices to show that ¥ extends v. But for
any I € Kand a € K, v(I) < vo(l) = v(a) + Ld(], @),
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Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).

Proof.
It suffices to extend each component of v, hence we assume v : K — R.
Let L = Lip(v), for « € K, define ¥, : E - R, ¥ : E > R

Ua(l) == v(a) + Ld(l,a), V(1) = 0121; Oa ().

Obviously Lip(¥s) = L for any o € K hence Lip(?) = L provided ¥ is
finite at one point. Hence it suffices to show that ¥ extends v. But for
any I € K and a € K, v(I) < vo(l) = v(e) + Ld(I, &), hence

v(Il) < o(1)
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Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).

Proof.
It suffices to extend each component of v, hence we assume v : K — R.
Let L = Lip(v), for « € K, define ¥, : E - R, ¥ : E > R

Ua(l) == v(a) + Ld(l,a), V(1) = 0121; Oa ().

Obviously Lip(¥s) = L for any o € K hence Lip(?) = L provided ¥ is
finite at one point. Hence it suffices to show that ¥ extends v. But for
any I € K and a € K, v(I) < vo(l) = v(e) + Ld(I, &), hence

v(1) < 0(1) and then v(I) = 0(I) (the inf is reached at o = /). O




Lipschitz maps: extension

Lemma 1
Let (E,d) be a metric space, K C E a subset and v : K — R”"
Lipschitz. Then v extends to ¥ : E — R" with Lip(¥) = Lip(v).

Proof.
It suffices to extend each component of v, hence we assume v : K — R.
Let L = Lip(v), for « € K, define ¥, : E - R, ¥ : E > R

Ua(l) == v(a) + Ld(l,a), V(1) = 0121; Oa ().

Obviously Lip(¥s) = L for any o € K hence Lip(?) = L provided ¥ is
finite at one point. Hence it suffices to show that ¥ extends v. But for
any I € K and a € K, v(I) < vo(l) = v(e) + Ld(I, &), hence

v(1) < 0(1) and then v(I) = 0(I) (the inf is reached at o = /). O

For simplicity, we shall write ¥ = v. The extension is not unique!
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Lipschitz maps: inverse
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Lemma 2

Letyp =1d — v :T" — T" with v : T" — R" such that Lip(v) < 1.
Then it is a Lipeomorphism: it has a unique inverse ¢ = 1d + u with
luleo < |vlco and Lip(u) < Lip(v)(1 — Lip(v)) ",
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Lipschitz maps: inverse

Abed Bounemoura

Lemma 2

Letyp =1d — v :T" — T" with v : T" — R" such that Lip(v) < 1.
Then it is a Lipeomorphism: it has a unique inverse ¢ = 1d + u with
luleo < |vlco and Lip(u) < Lip(v)(1 — Lip(v)) ",

Proof.
Let L = Lip(v), v* = |v|co, L* = L(1 — L)™* and

B* :={ue C%T") | |u|co < u*, Lip(u) < L*}.

It is a closed subspace of a Banach space, hence it is complete.
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Lipschitz maps: inverse

Abed Bounemoura

Lemma 2

Letyp =1d — v :T" — T" with v : T" — R" such that Lip(v) < 1.
Then it is a Lipeomorphism: it has a unique inverse ¢ = 1d + u with
luleo < |vlco and Lip(u) < Lip(v)(1 — Lip(v)) ",

Proof.
Let L = Lip(v), v* = |v|co, L* = L(1 — L)™* and

B* :={ue C%T") | |u|co < u*, Lip(u) < L*}.

It is a closed subspace of a Banach space, hence it is complete. Then
Id + u is a (right, but also left) inverse of Id — v iff

Po(u) :=vo(ld+u) =u.




Lipschitz maps: inverse

Lemma 2

Letyp =1d — v :T" — T" with v : T" — R" such that Lip(v) < 1.
Then it is a Lipeomorphism: it has a unique inverse ¢ = 1d + u with
luleo < |vlco and Lip(u) < Lip(v)(1 — Lip(v)) ",

Proof.
Let L = Lip(v), v* = |v|co, L* = L(1 — L)™* and

B* :={ue C%T") | |u|co < u*, Lip(u) < L*}.

It is a closed subspace of a Banach space, hence it is complete. Then
Id + u is a (right, but also left) inverse of Id — v iff

Po(u):=vo(ld+ u) =u.
P.(B*) C B*: |Py(u)|co < v* and Lip(P.(v)) < L(1+ L") = L*.
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Lipschitz maps: inverse
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Lemma 2

Letyp =1d — v :T" — T" with v : T" — R" such that Lip(v) < 1.
Then it is a Lipeomorphism: it has a unique inverse ¢ = 1d + u with
luleo < |vlco and Lip(u) < Lip(v)(1 — Lip(v)) ",

Proof.
Let L = Lip(v), v* = |v|co, L* = L(1 — L)™* and

B* :={ue C%T") | |u|co < u*, Lip(u) < L*}.

It is a closed subspace of a Banach space, hence it is complete. Then
Id + u is a (right, but also left) inverse of Id — v iff

Po(u) :=vo(ld+u) =u.

P.(B*) C B*: |Py(u)|co < v* and Lip(P.(v)) < L(1+ L") = L*.
P, contracts B*: |P,(u1) — Pv(u2)|co < Lip(v)|ur — 2] co. O
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Let ¢y =1d — v : T" — T" with Lip(v) < L. Then for any measurable
subset S C T", m(¢(S)) < (1+ L)"m(S).
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Lemma 3
Let ¢y =1d — v : T" — T" with Lip(v) < L. Then for any measurable

subset S C T", m(¢(S)) < (1+ L)"m(S).

Proof.

By definition of the (outer) Lebesgue measure in R”, it suffices to prove
the case where S is a cube (ball for the sup norm).
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Proof.

By definition of the (outer) Lebesgue measure in R”, it suffices to prove
the case where S is a cube (ball for the sup norm). But since
Lip(¢) = 1 4 L, the inequality is obvious for cubes. O
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Lipschitz maps: measure estimates
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Lemma 3
Let ¢y =1d — v : T" — T" with Lip(v) < L. Then for any measurable
subset S C T", m(¢(S)) < (1+ L)"m(S).

Proof.

By definition of the (outer) Lebesgue measure in R”, it suffices to prove
the case where S is a cube (ball for the sup norm). But since

Lip(¢) = 1 4 L, the inequality is obvious for cubes. O

Recall the statement we want to prove.

Corollary 2 (Arnold)

There exists €0 = €o(, 7, P) > 0 and C = C(7) > 1 such that for all
le| < eo, if K . is the set of | € T" such that A, is analytically
conjugated to T,, for some o € K, then

m(T"\R].) < Cv.
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Proof of Corollary 2

Apply the KAM normal form to each | = o € K = KJ and we find
ve(a) € R", Lip(vc) < 1/2, such that A,_,_(o) is analytically
conjugated to T,, so Rﬂ:e contains

K. :=={a—v.(a) | a € K}.
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Apply the KAM normal form to each | = o € K = KJ and we find
ve(a) € R", Lip(vc) < 1/2, such that A,_,_(o) is analytically
conjugated to T,, so Rﬂ:e contains

K. :=={a—v.(a) | a € K}.

Apply Lemma 1 to extend v.(a), o € K to v.(/), I € T" with the same
Lipschitz constant.
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Apply the KAM normal form to each | = o € K = KJ and we find
ve(a) € R", Lip(vc) < 1/2, such that A,_,_(o) is analytically
conjugated to T,, so Rﬂ:e contains

K. :=={a—v.(a) | a € K}.

Apply Lemma 1 to extend v.(a), o € K to v.(/), I € T" with the same
Lipschitz constant. Let 9.(/) =1 — v-(/) and write

K. = 1. (K).
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Apply the KAM normal form to each | = o € K = KJ and we find
ve(a) € R", Lip(vc) < 1/2, such that A,_,_(o) is analytically
conjugated to T,, so Rﬂ:e contains

K. :=={a—v.(a) | a € K}.

Apply Lemma 1 to extend v.(a), o € K to v.(/), I € T" with the same
Lipschitz constant. Let 9.(/) =1 — v-(/) and write

K. = 1 (K).
By Lemma 2, 9. : T" — T" is a bijection hence

T\ Ko =T\ ¢e(K) = ¢ (T") \ ¢e(K) = 9= (T" \ K)
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Apply the KAM normal form to each | = o € K = KJ and we find
ve(a) € R", Lip(vc) < 1/2, such that A,_,_(o) is analytically
conjugated to T,, so Rﬂ:e contains

K. :=={a—v.(a) | a € K}.

Apply Lemma 1 to extend v.(a), o € K to v.(/), I € T" with the same
Lipschitz constant. Let 9.(/) =1 — v-(/) and write

K. = 9:(K).
By Lemma 2, 9. : T" — T" is a bijection hence
T\ Ko = T"\ $=(K) = ¢e(T") \ ¢=(K) = $(T" \ K)
so applying Lemma 3 to S = T" \ K we arrive at

m(T"\ K2) = m(4-(T"\ K)) < (3/2)"m(T"\ K) < €.
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every | such that . (/) € K7, then F, . is conjugated to T,_().
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The inverse . = Id 4+ u. of Y. = Id — v. is a frequency mapping: for
every | such that . (/) € K7, then F, . is conjugated to T,_().

Replacing I by w(/) = wo(/), a frequency mapping is

pe(w(l) = w(l) + e (w(1)) = we (1),

If w(l) is a local C*-diffeomorphism and Lip(ue) small enough, then
we (1) is a local lipeomorphism.
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every | such that . (/) € K7, then F, . is conjugated to T,_().

Replacing I by w(/) = wo(/), a frequency mapping is
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If w(l) is a local C*-diffeomorphism and Lip(ue) small enough, then
we (1) is a local lipeomorphism. The set of “good” parameters /. and
“good” vectors w. (/) both have positive measure, and one can choose
we(l) = w(!) (good frequencies can be prescribed).
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The inverse . = Id 4+ u. of Y. = Id — v. is a frequency mapping: for
every | such that . (/) € K7, then F, . is conjugated to T,_().

Replacing I by w(/) = wo(/), a frequency mapping is

pe(w(l) = w(l) + e (w(1)) = we (1),

If w(l) is a local C*-diffeomorphism and Lip(ue) small enough, then
we (1) is a local lipeomorphism. The set of “good” parameters /. and
“good” vectors w. (/) both have positive measure, and one can choose
we(l) = w(!) (good frequencies can be prescribed).

If d >1and | € RY — w(/) € R"is C'-curved for some | > 1 and ue is
C'-small, then w(/) is still C'-curved.
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The inverse . = Id 4+ u. of Y. = Id — v. is a frequency mapping: for
every | such that . (/) € K7, then F, . is conjugated to T,_().

Replacing I by w(/) = wo(/), a frequency mapping is
pe (1) = (1) + e (1) 1= we (1),

If w(l) is a local C*-diffeomorphism and Lip(ue) small enough, then
we (1) is a local lipeomorphism. The set of “good” parameters /. and
“good” vectors w. (/) both have positive measure, and one can choose
we(l) = w(!) (good frequencies can be prescribed).

If d >1and | € RY — w(/) € R"is C'-curved for some | > 1 and ue is
C'-small, then w.(/) is still C'-curved. The set of good parameters for a
curved map has positive measure (Pyartli),
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The inverse . = Id 4+ u. of Y. = Id — v. is a frequency mapping: for
every | such that . (/) € K7, then F, . is conjugated to T,_().

Replacing I by w(/) = wo(/), a frequency mapping is
pe (1) = (1) + e (1) 1= we (1),

If w(l) is a local C*-diffeomorphism and Lip(ue) small enough, then
we (1) is a local lipeomorphism. The set of “good” parameters /. and
“good” vectors w. (/) both have positive measure, and one can choose
we(l) = w(!) (good frequencies can be prescribed).

If d >1and | € RY — w(/) € R"is C'-curved for some | > 1 and ue is
C'-small, then w.(/) is still C'-curved. The set of good parameters for a
curved map has positive measure (Pyartli), but not the set of good
frequencies: the set of w:(/:) may be disjoint from w(/).




