

KAM normal form II

Abed Bounemoura

CNRS-UPPA

September 19, 2025

Theorem (Arnold)

Fix $\gamma > 0$ and $\tau > n$. Then for any $\alpha \in K_\gamma^\tau$ and any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ sufficiently close to zero, there exist a unique couple (U, v) close to zero, where $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is real-analytic with zero average and $v \in \mathbb{R}^n$, such that for $F = T_\alpha + P$ and $\Phi = \text{Id} + U$, we have

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Moreover, $U = U(\alpha, P)$ and $v = v(\alpha, P)$ depend

- (1) smoothly on α (extend to smooth functions in $\alpha \in \mathbb{T}^n$)
- (2) analytically in P (analytic in $\varepsilon \in \mathbb{R}$ if $\varepsilon \mapsto P_\varepsilon$ is analytic)
- (3) and we have the estimates

$$\text{Lip}_\theta(U) \leq 1/2, \quad \text{Lip}_\alpha(v) \leq 1/2.$$

Beware that U and v are uniquely defined, and that the conjugacy holds true, only for $\alpha \in K_\gamma^\tau$!

Rigidity of Diophantine translation

KAM normal form II

Abed Bounemoura

Rigidity of Diophantine translation

Let $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphism homotopic to the identity, $\mathcal{M}(F) \neq \emptyset$
the set of its invariant Borel probability measures.

Rigidity of Diophantine translation

Let $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphism homotopic to the identity, $\mathcal{M}(F) \neq \emptyset$ the set of its invariant Borel probability measures. For $\mu \in \mathcal{M}(F)$, define its rotation vector $\mu(F) \in \mathbb{T}^n$ and the rotation set $\text{Rot}(F) \subseteq \mathbb{T}^n$

$$\mu(F) := \int_{\mathbb{T}^n} (F - \text{Id}) d\mu \pmod{\mathbb{Z}^n}, \quad \text{Rot}(F) := \{\mu(F) \in \mathbb{T}^n \mid \mu \in \mathcal{M}(F)\}.$$

Rigidity of Diophantine translation

Let $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphism homotopic to the identity, $\mathcal{M}(F) \neq \emptyset$ the set of its invariant Borel probability measures. For $\mu \in \mathcal{M}(F)$, define its rotation vector $\mu(F) \in \mathbb{T}^n$ and the rotation set $\text{Rot}(F) \subseteq \mathbb{T}^n$

$$\mu(F) := \int_{\mathbb{T}^n} (F - \text{Id}) d\mu \pmod{\mathbb{Z}^n}, \quad \text{Rot}(F) := \{\mu(F) \in \mathbb{T}^n \mid \mu \in \mathcal{M}(F)\}.$$

If μ is ergodic, then μ -ae by the Birkhoff ergodic theorem we have:

$$\lim_{n \rightarrow +\infty} \frac{F^n(x) - x}{n} = \mu(F) \in \mathbb{R}^n.$$

Rigidity of Diophantine translation

Let $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphism homotopic to the identity, $\mathcal{M}(F) \neq \emptyset$ the set of its invariant Borel probability measures. For $\mu \in \mathcal{M}(F)$, define its rotation vector $\mu(F) \in \mathbb{T}^n$ and the rotation set $\text{Rot}(F) \subseteq \mathbb{T}^n$

$$\mu(F) := \int_{\mathbb{T}^n} (F - \text{Id}) d\mu \bmod \mathbb{Z}^n, \quad \text{Rot}(F) := \{\mu(F) \in \mathbb{T}^n \mid \mu \in \mathcal{M}(F)\}.$$

If μ is ergodic, then μ -ae by the Birkhoff ergodic theorem we have:

$$\lim_{n \rightarrow +\infty} \frac{F^n(x) - x}{n} = \mu(F) \in \mathbb{R}^n.$$

For $n = 1$, $\text{Rot}(F) = \{\rho(F)\}$ and $\sup_{n \in \mathbb{N}} |F^n - \text{Id} - n\rho(F)|_{C^0} < +\infty$.

Rigidity of Diophantine translation

Let $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphism homotopic to the identity, $\mathcal{M}(F) \neq \emptyset$ the set of its invariant Borel probability measures. For $\mu \in \mathcal{M}(F)$, define its rotation vector $\mu(F) \in \mathbb{T}^n$ and the rotation set $\text{Rot}(F) \subseteq \mathbb{T}^n$

$$\mu(F) := \int_{\mathbb{T}^n} (F - \text{Id}) d\mu \pmod{\mathbb{Z}^n}, \quad \text{Rot}(F) := \{\mu(F) \in \mathbb{T}^n \mid \mu \in \mathcal{M}(F)\}.$$

If μ is ergodic, then μ -ae by the Birkhoff ergodic theorem we have:

$$\lim_{n \rightarrow +\infty} \frac{F^n(x) - x}{n} = \mu(F) \in \mathbb{R}^n.$$

For $n = 1$, $\text{Rot}(F) = \{\rho(F)\}$ and $\sup_{n \in \mathbb{N}} |F^n - \text{Id} - n\rho(F)|_{C^0} < +\infty$.

The rotation set is invariant by conjugacy: if $F_* = \Phi \circ F \circ \Phi^{-1}$ and $\mu \in \mathcal{M}(F)$, then $\mu_* = \Phi_* \mu \in \mathcal{M}(F_*)$ and $\mu(F) = \mu_*(F_*)$.

Rigidity of Diophantine translation

Let $F : \mathbb{T}^n \rightarrow \mathbb{T}^n$ homeomorphism homotopic to the identity, $\mathcal{M}(F) \neq \emptyset$ the set of its invariant Borel probability measures. For $\mu \in \mathcal{M}(F)$, define its rotation vector $\mu(F) \in \mathbb{T}^n$ and the rotation set $\text{Rot}(F) \subseteq \mathbb{T}^n$

$$\mu(F) := \int_{\mathbb{T}^n} (F - \text{Id}) d\mu \bmod \mathbb{Z}^n, \quad \text{Rot}(F) := \{\mu(F) \in \mathbb{T}^n \mid \mu \in \mathcal{M}(F)\}.$$

If μ is ergodic, then μ -ae by the Birkhoff ergodic theorem we have:

$$\lim_{n \rightarrow +\infty} \frac{F^n(x) - x}{n} = \mu(F) \in \mathbb{R}^n.$$

For $n = 1$, $\text{Rot}(F) = \{\rho(F)\}$ and $\sup_{n \in \mathbb{N}} |F^n - \text{Id} - n\rho(F)|_{C^0} < +\infty$.

The rotation set is invariant by conjugacy: if $F_* = \Phi \circ F \circ \Phi^{-1}$ and $\mu \in \mathcal{M}(F)$, then $\mu_* = \Phi_* \mu \in \mathcal{M}(F_*)$ and $\mu(F) = \mu_*(F_*)$.

Corollary 1

Under the assumptions of the theorem, assume further that $\alpha \in \text{Rot}(F)$. Then $v = v(F) = 0$, that is F is analytically conjugated to T_α .

Rigidity of Diophantine translation: proof

KAM normal form II

Abed Bounemoura

For $F = T_\alpha + P$, we have $v \in \mathbb{R}^n$ and $\Phi = \text{Id} + U$ such that

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

For $F = T_\alpha + P$, we have $v \in \mathbb{R}^n$ and $\Phi = \text{Id} + U$ such that

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Let $F_* = \Phi \circ F \circ \Phi^{-1}$, then

$$F_* = \text{Id} + \alpha + v + X, \quad X := U \circ (F \circ \Phi^{-1}) - U \circ (F \circ \Phi^{-1} - v).$$

Rigidity of Diophantine translation: proof

For $F = T_\alpha + P$, we have $v \in \mathbb{R}^n$ and $\Phi = \text{Id} + U$ such that

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Let $F_* = \Phi \circ F \circ \Phi^{-1}$, then

$$F_* = \text{Id} + \alpha + v + X, \quad X := U \circ (F \circ \Phi^{-1}) - U \circ (F \circ \Phi^{-1} - v).$$

By assumption, $\alpha \in \text{Rot}(F) = \text{Rot}(F_*)$, and let μ_* such that $\mu_*(F_*) = \alpha$.

Rigidity of Diophantine translation: proof

For $F = T_\alpha + P$, we have $v \in \mathbb{R}^n$ and $\Phi = \text{Id} + U$ such that

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Let $F_* = \Phi \circ F \circ \Phi^{-1}$, then

$$F_* = \text{Id} + \alpha + v + X, \quad X := U \circ (F \circ \Phi^{-1}) - U \circ (F \circ \Phi^{-1} - v).$$

By assumption, $\alpha \in \text{Rot}(F) = \text{Rot}(F_*)$, and let μ_* such that $\mu_*(F_*) = \alpha$.

$$\int_{\mathbb{T}^n} (F_* - \text{Id}) d\mu_* = \alpha \iff v = - \int_{\mathbb{T}^n} X d\mu_* \in \mathbb{R}^n.$$

Rigidity of Diophantine translation: proof

For $F = T_\alpha + P$, we have $v \in \mathbb{R}^n$ and $\Phi = \text{Id} + U$ such that

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

Let $F_* = \Phi \circ F \circ \Phi^{-1}$, then

$$F_* = \text{Id} + \alpha + v + X, \quad X := U \circ (F \circ \Phi^{-1}) - U \circ (F \circ \Phi^{-1} - v).$$

By assumption, $\alpha \in \text{Rot}(F) = \text{Rot}(F_*)$, and let μ_* such that $\mu_*(F_*) = \alpha$.

$$\int_{\mathbb{T}^n} (F_* - \text{Id}) d\mu_* = \alpha \iff v = - \int_{\mathbb{T}^n} X d\mu_* \in \mathbb{R}^n.$$

Taking the supremum norm on \mathbb{T}^n this gives

$$|v| \leq \sup_{\theta \in \mathbb{T}^n} |X(\theta)| \leq \text{Lip}(U)|v| \leq |v|/2.$$

Hence $v = 0$.

Arnold family of torus maps

KAM normal form II

Abed Bounemoura

Arnold family of torus maps

Fix $\alpha_0 \in K_\gamma^\tau$, $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ real-analytic and consider the following "deformation" of $F_\varepsilon = T_{\alpha_0} + \varepsilon P$, $\varepsilon \in \mathbb{R}$:

$$\theta \in \mathbb{T}^n \longmapsto F_\varepsilon(\theta) + I = \theta + \alpha_0 + I + \varepsilon P(\theta) \in \mathbb{T}^n$$

where $I \in \mathbb{T}^n$ are parameters.

Arnold family of torus maps

Fix $\alpha_0 \in K_\gamma^\tau$, $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ real-analytic and consider the following "deformation" of $F_\varepsilon = T_{\alpha_0} + \varepsilon P$, $\varepsilon \in \mathbb{R}$:

$$\theta \in \mathbb{T}^n \longmapsto F_\varepsilon(\theta) + I = \theta + \alpha_0 + I + \varepsilon P(\theta) \in \mathbb{T}^n$$

where $I \in \mathbb{T}^n$ are parameters. Translating parameters, consider

$$A_{I,\varepsilon} : \theta \in \mathbb{T}^n \mapsto \theta + I + \varepsilon P(\theta) \in \mathbb{T}^n.$$

Arnold family of torus maps

Fix $\alpha_0 \in K_\gamma^\tau$, $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ real-analytic and consider the following "deformation" of $F_\varepsilon = T_{\alpha_0} + \varepsilon P$, $\varepsilon \in \mathbb{R}$:

$$\theta \in \mathbb{T}^n \longmapsto F_\varepsilon(\theta) + I = \theta + \alpha_0 + I + \varepsilon P(\theta) \in \mathbb{T}^n$$

where $I \in \mathbb{T}^n$ are parameters. Translating parameters, consider

$$A_{I,\varepsilon} : \theta \in \mathbb{T}^n \mapsto \theta + I + \varepsilon P(\theta) \in \mathbb{T}^n.$$

Corollary 2 (Arnold)

There exists $\varepsilon_0 = \varepsilon_0(\gamma, \tau, P) > 0$ and $\tilde{C} = \tilde{C}(\tau) > 1$ such that for all $|\varepsilon| \leq \varepsilon_0$, if $\tilde{K}_{\gamma,\varepsilon}^\tau$ is the set of $I \in \mathbb{T}^n$ such that $A_{I,\varepsilon}$ is analytically conjugated to T_α for some $\alpha \in K_\gamma^\tau$, then

$$m\left(\mathbb{T}^n \setminus \tilde{K}_{\gamma,\varepsilon}^\tau\right) \leq \tilde{C}\gamma.$$

Arnold family of torus maps

Fix $\alpha_0 \in K_\gamma^\tau$, $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ real-analytic and consider the following "deformation" of $F_\varepsilon = T_{\alpha_0} + \varepsilon P$, $\varepsilon \in \mathbb{R}$:

$$\theta \in \mathbb{T}^n \longmapsto F_\varepsilon(\theta) + I = \theta + \alpha_0 + I + \varepsilon P(\theta) \in \mathbb{T}^n$$

where $I \in \mathbb{T}^n$ are parameters. Translating parameters, consider

$$A_{I,\varepsilon} : \theta \in \mathbb{T}^n \mapsto \theta + I + \varepsilon P(\theta) \in \mathbb{T}^n.$$

Corollary 2 (Arnold)

There exists $\varepsilon_0 = \varepsilon_0(\gamma, \tau, P) > 0$ and $\tilde{C} = \tilde{C}(\tau) > 1$ such that for all $|\varepsilon| \leq \varepsilon_0$, if $\tilde{K}_{\gamma,\varepsilon}^\tau$ is the set of $I \in \mathbb{T}^n$ such that $A_{I,\varepsilon}$ is analytically conjugated to T_α for some $\alpha \in K_\gamma^\tau$, then

$$m\left(\mathbb{T}^n \setminus \tilde{K}_{\gamma,\varepsilon}^\tau\right) \leq \tilde{C}\gamma.$$

We will see that $\varepsilon_0 = c(\tau, P)\gamma = c\gamma$ for some $c < 1$, so choosing $\gamma = \varepsilon/c$ we have $m\left(\mathbb{T}^n \setminus \tilde{K}_{\varepsilon/c,\varepsilon}^\tau\right) \leq \tilde{C}\varepsilon/c$ for ε small enough.

Family of torus maps: some comments

KAM normal form II

Abed Bounemoura

Family of torus maps: some comments

Corollary 2 holds true if we replace $I \mapsto I$ in the definition of $A_{I,\varepsilon}$ by a local C^1 -diffeomorphism $I \in \mathbb{R}^n \mapsto \omega(I) \in \mathbb{R}^n$ (“unperturbed frequency map”), provided $\varepsilon_0 = \varepsilon_0(\gamma, \tau, P, \omega)$.

Family of torus maps: some comments

Corollary 2 holds true if we replace $I \mapsto I$ in the definition of $A_{I,\varepsilon}$ by a local C^1 -diffeomorphism $I \in \mathbb{R}^n \mapsto \omega(I) \in \mathbb{R}^n$ (“unperturbed frequency map”), provided $\varepsilon_0 = \varepsilon_0(\gamma, \tau, P, \omega)$.

Also true under weaker non-degeneracy: $I \in \mathbb{R}^d$ for some $d \geq 1$ and $\omega : \mathbb{R}^d \rightarrow \mathbb{R}^n$ is “curved”: all partial derivatives of ω of order ≥ 1 generate \mathbb{R}^n (Rüssmann). This requires smoothness of $\alpha \mapsto v(\alpha, \varepsilon)$.

Family of torus maps: some comments

Corollary 2 holds true if we replace $I \mapsto I$ in the definition of $A_{I,\varepsilon}$ by a local C^1 -diffeomorphism $I \in \mathbb{R}^n \mapsto \omega(I) \in \mathbb{R}^n$ ("unperturbed frequency map"), provided $\varepsilon_0 = \varepsilon_0(\gamma, \tau, P, \omega)$.

Also true under weaker non-degeneracy: $I \in \mathbb{R}^d$ for some $d \geq 1$ and $\omega : \mathbb{R}^d \rightarrow \mathbb{R}^n$ is "curved": all partial derivatives of ω of order ≥ 1 generate \mathbb{R}^n (Rüssmann). This requires smoothness of $\alpha \mapsto v(\alpha, \varepsilon)$.

Let P_ε an analytic family in $\varepsilon \in \mathbb{R}^n$ with $P_0 = 0$ and consider

$$H_{\alpha_0, \varepsilon} : \theta \in \mathbb{T}^n \mapsto \theta + \alpha_0 + P_\varepsilon(\theta) \in \mathbb{T}^n.$$

Family of torus maps: some comments

Corollary 2 holds true if we replace $I \mapsto I$ in the definition of $A_{I,\varepsilon}$ by a local C^1 -diffeomorphism $I \in \mathbb{R}^n \mapsto \omega(I) \in \mathbb{R}^n$ ("unperturbed frequency map"), provided $\varepsilon_0 = \varepsilon_0(\gamma, \tau, P, \omega)$.

Also true under weaker non-degeneracy: $I \in \mathbb{R}^d$ for some $d \geq 1$ and $\omega : \mathbb{R}^d \rightarrow \mathbb{R}^n$ is "curved": all partial derivatives of ω of order ≥ 1 generate \mathbb{R}^n (Rüssmann). This requires smoothness of $\alpha \mapsto v(\alpha, \varepsilon)$.

Let P_ε an analytic family in $\varepsilon \in \mathbb{R}^n$ with $P_0 = 0$ and consider

$$H_{\alpha_0, \varepsilon} : \theta \in \mathbb{T}^n \mapsto \theta + \alpha_0 + P_\varepsilon(\theta) \in \mathbb{T}^n.$$

For $n = 1$, $\varepsilon = 0$ is a density point of the set of ε for which $H_{\alpha_0, \varepsilon}$ is analytically conjugated to translation. This requires analyticity of $\varepsilon \mapsto v(\alpha, \varepsilon)$.

Family of torus maps: some comments

Corollary 2 holds true if we replace $I \mapsto I$ in the definition of $A_{I,\varepsilon}$ by a local C^1 -diffeomorphism $I \in \mathbb{R}^n \mapsto \omega(I) \in \mathbb{R}^n$ ("unperturbed frequency map"), provided $\varepsilon_0 = \varepsilon_0(\gamma, \tau, P, \omega)$.

Also true under weaker non-degeneracy: $I \in \mathbb{R}^d$ for some $d \geq 1$ and $\omega : \mathbb{R}^d \rightarrow \mathbb{R}^n$ is "curved": all partial derivatives of ω of order ≥ 1 generate \mathbb{R}^n (Rüssmann). This requires smoothness of $\alpha \mapsto v(\alpha, \varepsilon)$.

Let P_ε an analytic family in $\varepsilon \in \mathbb{R}^n$ with $P_0 = 0$ and consider

$$H_{\alpha_0, \varepsilon} : \theta \in \mathbb{T}^n \mapsto \theta + \alpha_0 + P_\varepsilon(\theta) \in \mathbb{T}^n.$$

For $n = 1$, $\varepsilon = 0$ is a density point of the set of ε for which $H_{\alpha_0, \varepsilon}$ is analytically conjugated to translation. This requires analyticity of $\varepsilon \mapsto v(\alpha, \varepsilon)$. For $n \geq 2$ nothing is known.

Lipschitz maps

KAM normal form II

Abed Bounemoura

Lipschitz maps

Let (E, d) be a metric space, a map $u : E \rightarrow \mathbb{R}^n$ is Lipschitz if

$$\text{Lip}(u) := \sup_{I \neq I'} \frac{|u(I) - u(I')|}{d(I, I')} < +\infty.$$

Lipschitz maps

Let (E, d) be a metric space, a map $u : E \rightarrow \mathbb{R}^n$ is Lipschitz if

$$\text{Lip}(u) := \sup_{I \neq I'} \frac{|u(I) - u(I')|}{d(I, I')} < +\infty.$$

For $I_0 \in E$, the map $I \in E \mapsto d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz.

Lipschitz maps

Let (E, d) be a metric space, a map $u : E \rightarrow \mathbb{R}^n$ is Lipschitz if

$$\text{Lip}(u) := \sup_{I \neq I'} \frac{|u(I) - u(I')|}{d(I, I')} < +\infty.$$

For $I_0 \in E$, the map $I \in E \mapsto d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz. If $K \subseteq E$, then $I \in E \mapsto d(I, K) = \inf_{I_0 \in K} d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz.

Lipschitz maps

Let (E, d) be a metric space, a map $u : E \rightarrow \mathbb{R}^n$ is Lipschitz if

$$\text{Lip}(u) := \sup_{I \neq I'} \frac{|u(I) - u(I')|}{d(I, I')} < +\infty.$$

For $I_0 \in E$, the map $I \in E \mapsto d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz. If $K \subseteq E$, then $I \in E \mapsto d(I, K) = \inf_{I_0 \in K} d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz. More generally, let K be any set, $v_\alpha : E \rightarrow \mathbb{R}$ for $\alpha \in K$ and assume that $\text{Lip}(v_\alpha) \leq L$. If $v(I) := \inf_{\alpha \in K} v_\alpha(I)$ is finite at one point, then $\text{Lip}(v) \leq L$.

Lipschitz maps

Let (E, d) be a metric space, a map $u : E \rightarrow \mathbb{R}^n$ is Lipschitz if

$$\text{Lip}(u) := \sup_{I \neq I'} \frac{|u(I) - u(I')|}{d(I, I')} < +\infty.$$

For $I_0 \in E$, the map $I \in E \mapsto d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz. If $K \subseteq E$, then $I \in E \mapsto d(I, K) = \inf_{I_0 \in K} d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz. More generally, let K be any set, $v_\alpha : E \rightarrow \mathbb{R}$ for $\alpha \in K$ and assume that $\text{Lip}(v_\alpha) \leq L$. If $v(I) := \inf_{\alpha \in K} v_\alpha(I)$ is finite at one point, then $\text{Lip}(v) \leq L$.

If $v : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is C^1 , since \mathbb{R}^n is convex we have

$$\text{Lip}(v) = \sup_{I \in \mathbb{T}^n} |Dv(I)| := \sup_{I \in \mathbb{T}^n} \sup_{e \in \mathbb{R}^n, |e|=1} |Dv(I)e| = \sup_{I \in \mathbb{T}^n} \sum_{|I|=1} |\partial' v(I)|.$$

Lipschitz maps

Let (E, d) be a metric space, a map $u : E \rightarrow \mathbb{R}^n$ is Lipschitz if

$$\text{Lip}(u) := \sup_{I \neq I'} \frac{|u(I) - u(I')|}{d(I, I')} < +\infty.$$

For $I_0 \in E$, the map $I \in E \mapsto d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz. If $K \subseteq E$, then $I \in E \mapsto d(I, K) = \inf_{I_0 \in K} d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz. More generally, let K be any set, $v_\alpha : E \rightarrow \mathbb{R}$ for $\alpha \in K$ and assume that $\text{Lip}(v_\alpha) \leq L$. If $v(I) := \inf_{\alpha \in K} v_\alpha(I)$ is finite at one point, then $\text{Lip}(v) \leq L$.

If $v : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is C^1 , since \mathbb{R}^n is convex we have

$$\text{Lip}(v) = \sup_{I \in \mathbb{T}^n} |Dv(I)| := \sup_{I \in \mathbb{T}^n} \sup_{e \in \mathbb{R}^n, |e|=1} |Dv(I)e| = \sup_{I \in \mathbb{T}^n} \sum_{|I|=1} |\partial' v(I)|.$$

$$\text{Lip}(v_1 + v_2) \leq \text{Lip}(v_1) + \text{Lip}(v_2)$$

Lipschitz maps

Let (E, d) be a metric space, a map $u : E \rightarrow \mathbb{R}^n$ is Lipschitz if

$$\text{Lip}(u) := \sup_{I \neq I'} \frac{|u(I) - u(I')|}{d(I, I')} < +\infty.$$

For $I_0 \in E$, the map $I \in E \mapsto d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz. If $K \subseteq E$, then $I \in E \mapsto d(I, K) = \inf_{I_0 \in K} d(I, I_0) \in \mathbb{R}$ is 1-Lipschitz. More generally, let K be any set, $v_\alpha : E \rightarrow \mathbb{R}$ for $\alpha \in K$ and assume that $\text{Lip}(v_\alpha) \leq L$. If $v(I) := \inf_{\alpha \in K} v_\alpha(I)$ is finite at one point, then $\text{Lip}(v) \leq L$.

If $v : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is C^1 , since \mathbb{R}^n is convex we have

$$\text{Lip}(v) = \sup_{I \in \mathbb{T}^n} |Dv(I)| := \sup_{I \in \mathbb{T}^n} \sup_{e \in \mathbb{R}^n, |e|=1} |Dv(I)e| = \sup_{I \in \mathbb{T}^n} \sum_{|I|=1} |\partial' v(I)|.$$

$$\text{Lip}(v_1 + v_2) \leq \text{Lip}(v_1) + \text{Lip}(v_2)$$

$$\text{Lip}(v_1 \circ (\text{Id} + v_2)) \leq \text{Lip}(v_1)(1 + \text{Lip}(v_2)).$$

Lipschitz maps: extension

KAM normal form II

Abed Bounemoura

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Lipschitz maps: extension

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Proof.

It suffices to extend each component of v , hence we assume $v : K \rightarrow \mathbb{R}$.

Lipschitz maps: extension

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Proof.

It suffices to extend each component of v , hence we assume $v : K \rightarrow \mathbb{R}$. Let $L = \text{Lip}(v)$, for $\alpha \in K$, define $\hat{v}_\alpha : E \rightarrow \mathbb{R}$, $\hat{v} : E \rightarrow \mathbb{R}$

$$\hat{v}_\alpha(I) := v(\alpha) + Ld(I, \alpha), \quad \hat{v}(I) = \inf_{\alpha \in K} \hat{v}_\alpha(I).$$

Lipschitz maps: extension

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Proof.

It suffices to extend each component of v , hence we assume $v : K \rightarrow \mathbb{R}$. Let $L = \text{Lip}(v)$, for $\alpha \in K$, define $\hat{v}_\alpha : E \rightarrow \mathbb{R}$, $\hat{v} : E \rightarrow \mathbb{R}$

$$\hat{v}_\alpha(I) := v(\alpha) + Ld(I, \alpha), \quad \hat{v}(I) = \inf_{\alpha \in K} \hat{v}_\alpha(I).$$

Obviously $\text{Lip}(\hat{v}_\alpha) = L$ for any $\alpha \in K$

Lipschitz maps: extension

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Proof.

It suffices to extend each component of v , hence we assume $v : K \rightarrow \mathbb{R}$. Let $L = \text{Lip}(v)$, for $\alpha \in K$, define $\hat{v}_\alpha : E \rightarrow \mathbb{R}$, $\hat{v} : E \rightarrow \mathbb{R}$

$$\hat{v}_\alpha(I) := v(\alpha) + Ld(I, \alpha), \quad \hat{v}(I) = \inf_{\alpha \in K} \hat{v}_\alpha(I).$$

Obviously $\text{Lip}(\hat{v}_\alpha) = L$ for any $\alpha \in K$ hence $\text{Lip}(\hat{v}) = L$ provided \hat{v} is finite at one point.

Lipschitz maps: extension

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Proof.

It suffices to extend each component of v , hence we assume $v : K \rightarrow \mathbb{R}$. Let $L = \text{Lip}(v)$, for $\alpha \in K$, define $\hat{v}_\alpha : E \rightarrow \mathbb{R}$, $\hat{v} : E \rightarrow \mathbb{R}$

$$\hat{v}_\alpha(I) := v(\alpha) + Ld(I, \alpha), \quad \hat{v}(I) = \inf_{\alpha \in K} \hat{v}_\alpha(I).$$

Obviously $\text{Lip}(\hat{v}_\alpha) = L$ for any $\alpha \in K$ hence $\text{Lip}(\hat{v}) = L$ provided \hat{v} is finite at one point. Hence it suffices to show that \hat{v} extends v .

Lipschitz maps: extension

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Proof.

It suffices to extend each component of v , hence we assume $v : K \rightarrow \mathbb{R}$. Let $L = \text{Lip}(v)$, for $\alpha \in K$, define $\hat{v}_\alpha : E \rightarrow \mathbb{R}$, $\hat{v} : E \rightarrow \mathbb{R}$

$$\hat{v}_\alpha(I) := v(\alpha) + Ld(I, \alpha), \quad \hat{v}(I) = \inf_{\alpha \in K} \hat{v}_\alpha(I).$$

Obviously $\text{Lip}(\hat{v}_\alpha) = L$ for any $\alpha \in K$ hence $\text{Lip}(\hat{v}) = L$ provided \hat{v} is finite at one point. Hence it suffices to show that \hat{v} extends v . But for any $I \in K$ and $\alpha \in K$, $v(I) \leq v_\alpha(I) = v(\alpha) + Ld(I, \alpha)$,

Lipschitz maps: extension

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Proof.

It suffices to extend each component of v , hence we assume $v : K \rightarrow \mathbb{R}$. Let $L = \text{Lip}(v)$, for $\alpha \in K$, define $\hat{v}_\alpha : E \rightarrow \mathbb{R}$, $\hat{v} : E \rightarrow \mathbb{R}$

$$\hat{v}_\alpha(I) := v(\alpha) + Ld(I, \alpha), \quad \hat{v}(I) = \inf_{\alpha \in K} \hat{v}_\alpha(I).$$

Obviously $\text{Lip}(\hat{v}_\alpha) = L$ for any $\alpha \in K$ hence $\text{Lip}(\hat{v}) = L$ provided \hat{v} is finite at one point. Hence it suffices to show that \hat{v} extends v . But for any $I \in K$ and $\alpha \in K$, $v(I) \leq v_\alpha(I) = v(\alpha) + Ld(I, \alpha)$, hence $v(I) \leq \hat{v}(I)$

Lipschitz maps: extension

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Proof.

It suffices to extend each component of v , hence we assume $v : K \rightarrow \mathbb{R}$. Let $L = \text{Lip}(v)$, for $\alpha \in K$, define $\hat{v}_\alpha : E \rightarrow \mathbb{R}$, $\hat{v} : E \rightarrow \mathbb{R}$

$$\hat{v}_\alpha(I) := v(\alpha) + Ld(I, \alpha), \quad \hat{v}(I) = \inf_{\alpha \in K} \hat{v}_\alpha(I).$$

Obviously $\text{Lip}(\hat{v}_\alpha) = L$ for any $\alpha \in K$ hence $\text{Lip}(\hat{v}) = L$ provided \hat{v} is finite at one point. Hence it suffices to show that \hat{v} extends v . But for any $I \in K$ and $\alpha \in K$, $v(I) \leq v_\alpha(I) = v(\alpha) + Ld(I, \alpha)$, hence $v(I) \leq \hat{v}(I)$ and then $v(I) = \hat{v}(I)$ (the inf is reached at $\alpha = I$). □

Lipschitz maps: extension

Lemma 1

Let (E, d) be a metric space, $K \subseteq E$ a subset and $v : K \rightarrow \mathbb{R}^n$ Lipschitz. Then v extends to $\hat{v} : E \rightarrow \mathbb{R}^n$ with $\text{Lip}(\hat{v}) = \text{Lip}(v)$.

Proof.

It suffices to extend each component of v , hence we assume $v : K \rightarrow \mathbb{R}$. Let $L = \text{Lip}(v)$, for $\alpha \in K$, define $\hat{v}_\alpha : E \rightarrow \mathbb{R}$, $\hat{v} : E \rightarrow \mathbb{R}$

$$\hat{v}_\alpha(I) := v(\alpha) + Ld(I, \alpha), \quad \hat{v}(I) = \inf_{\alpha \in K} \hat{v}_\alpha(I).$$

Obviously $\text{Lip}(\hat{v}_\alpha) = L$ for any $\alpha \in K$ hence $\text{Lip}(\hat{v}) = L$ provided \hat{v} is finite at one point. Hence it suffices to show that \hat{v} extends v . But for any $I \in K$ and $\alpha \in K$, $v(I) \leq v_\alpha(I) = v(\alpha) + Ld(I, \alpha)$, hence $v(I) \leq \hat{v}(I)$ and then $v(I) = \hat{v}(I)$ (the inf is reached at $\alpha = I$). □

For simplicity, we shall write $\hat{v} = v$. The extension is not unique!

Lipschitz maps: inverse

KAM normal form II

Abed Bounemoura

Lipschitz maps: inverse

Lemma 2

Let $\psi = \text{Id} - v : \mathbb{T}^n \rightarrow \mathbb{T}^n$ with $v : \mathbb{T}^n \rightarrow \mathbb{R}^n$ such that $\text{Lip}(v) < 1$.

Then it is a Lipeomorphism: it has a unique inverse $\varphi = \text{Id} + u$ with $|u|_{C^0} \leq |v|_{C^0}$ and $\text{Lip}(u) \leq \text{Lip}(v)(1 - \text{Lip}(v))^{-1}$.

Lemma 2

Let $\psi = \text{Id} - v : \mathbb{T}^n \rightarrow \mathbb{T}^n$ with $v : \mathbb{T}^n \rightarrow \mathbb{R}^n$ such that $\text{Lip}(v) < 1$.

Then it is a Lipeomorphism: it has a unique inverse $\varphi = \text{Id} + u$ with $|u|_{C^0} \leq |v|_{C^0}$ and $\text{Lip}(u) \leq \text{Lip}(v)(1 - \text{Lip}(v))^{-1}$.

Proof.

Let $L = \text{Lip}(v)$, $v^* = |v|_{C^0}$, $L^* = L(1 - L)^{-1}$ and

$$B^* := \{u \in C^0(\mathbb{T}^n) \mid |u|_{C^0} \leq u^*, \text{Lip}(u) \leq L^*\}.$$

It is a closed subspace of a Banach space, hence it is complete.

Lemma 2

Let $\psi = \text{Id} - v : \mathbb{T}^n \rightarrow \mathbb{T}^n$ with $v : \mathbb{T}^n \rightarrow \mathbb{R}^n$ such that $\text{Lip}(v) < 1$.

Then it is a Lipeomorphism: it has a unique inverse $\varphi = \text{Id} + u$ with $|u|_{C^0} \leq |v|_{C^0}$ and $\text{Lip}(u) \leq \text{Lip}(v)(1 - \text{Lip}(v))^{-1}$.

Proof.

Let $L = \text{Lip}(v)$, $v^* = |v|_{C^0}$, $L^* = L(1 - L)^{-1}$ and

$$B^* := \{u \in C^0(\mathbb{T}^n) \mid |u|_{C^0} \leq u^*, \text{Lip}(u) \leq L^*\}.$$

It is a closed subspace of a Banach space, hence it is complete. Then $\text{Id} + u$ is a (right, but also left) inverse of $\text{Id} - v$ iff

$$\mathcal{P}_v(u) := v \circ (\text{Id} + u) = u.$$

Lemma 2

Let $\psi = \text{Id} - v : \mathbb{T}^n \rightarrow \mathbb{T}^n$ with $v : \mathbb{T}^n \rightarrow \mathbb{R}^n$ such that $\text{Lip}(v) < 1$.

Then it is a Lipeomorphism: it has a unique inverse $\varphi = \text{Id} + u$ with $|u|_{C^0} \leq |v|_{C^0}$ and $\text{Lip}(u) \leq \text{Lip}(v)(1 - \text{Lip}(v))^{-1}$.

Proof.

Let $L = \text{Lip}(v)$, $v^* = |v|_{C^0}$, $L^* = L(1 - L)^{-1}$ and

$$B^* := \{u \in C^0(\mathbb{T}^n) \mid |u|_{C^0} \leq u^*, \text{Lip}(u) \leq L^*\}.$$

It is a closed subspace of a Banach space, hence it is complete. Then $\text{Id} + u$ is a (right, but also left) inverse of $\text{Id} - v$ iff

$$\mathcal{P}_v(u) := v \circ (\text{Id} + u) = u.$$

$\mathcal{P}_v(B^*) \subseteq B^*$: $|\mathcal{P}_v(u)|_{C^0} \leq v^*$ and $\text{Lip}(\mathcal{P}_v(u)) \leq L(1 + L^*) = L^*$.

Lemma 2

Let $\psi = \text{Id} - v : \mathbb{T}^n \rightarrow \mathbb{T}^n$ with $v : \mathbb{T}^n \rightarrow \mathbb{R}^n$ such that $\text{Lip}(v) < 1$.

Then it is a Lipeomorphism: it has a unique inverse $\varphi = \text{Id} + u$ with $|u|_{C^0} \leq |v|_{C^0}$ and $\text{Lip}(u) \leq \text{Lip}(v)(1 - \text{Lip}(v))^{-1}$.

Proof.

Let $L = \text{Lip}(v)$, $v^* = |v|_{C^0}$, $L^* = L(1 - L)^{-1}$ and

$$B^* := \{u \in C^0(\mathbb{T}^n) \mid |u|_{C^0} \leq u^*, \text{Lip}(u) \leq L^*\}.$$

It is a closed subspace of a Banach space, hence it is complete. Then $\text{Id} + u$ is a (right, but also left) inverse of $\text{Id} - v$ iff

$$\mathcal{P}_v(u) := v \circ (\text{Id} + u) = u.$$

$\mathcal{P}_v(B^*) \subseteq B^*$: $|\mathcal{P}_v(u)|_{C^0} \leq v^*$ and $\text{Lip}(\mathcal{P}_v(u)) \leq L(1 + L^*) = L^*$.

\mathcal{P}_v contracts B^* : $|\mathcal{P}_v(u_1) - \mathcal{P}_v(u_2)|_{C^0} \leq \text{Lip}(v)|u_1 - u_2|_{C^0}$. □

Lipschitz maps: measure estimates

KAM normal form II

Abed Bounemoura

Lipschitz maps: measure estimates

Lemma 3

Let $\psi = \text{Id} - v : \mathbb{T}^n \rightarrow \mathbb{T}^n$ with $\text{Lip}(v) \leq L$. Then for any measurable subset $S \subseteq \mathbb{T}^n$, $m(\psi(S)) \leq (1 + L)^n m(S)$.

Lipschitz maps: measure estimates

Lemma 3

Let $\psi = \text{Id} - v : \mathbb{T}^n \rightarrow \mathbb{T}^n$ with $\text{Lip}(v) \leq L$. Then for any measurable subset $S \subseteq \mathbb{T}^n$, $m(\psi(S)) \leq (1 + L)^n m(S)$.

Proof.

By definition of the (outer) Lebesgue measure in \mathbb{R}^n , it suffices to prove the case where S is a cube (ball for the sup norm).

Lipschitz maps: measure estimates

Lemma 3

Let $\psi = \text{Id} - v : \mathbb{T}^n \rightarrow \mathbb{T}^n$ with $\text{Lip}(v) \leq L$. Then for any measurable subset $S \subseteq \mathbb{T}^n$, $m(\psi(S)) \leq (1 + L)^n m(S)$.

Proof.

By definition of the (outer) Lebesgue measure in \mathbb{R}^n , it suffices to prove the case where S is a cube (ball for the sup norm). But since $\text{Lip}(\psi) = 1 + L$, the inequality is obvious for cubes. □

Lipschitz maps: measure estimates

Lemma 3

Let $\psi = \text{Id} - v : \mathbb{T}^n \rightarrow \mathbb{T}^n$ with $\text{Lip}(v) \leq L$. Then for any measurable subset $S \subseteq \mathbb{T}^n$, $m(\psi(S)) \leq (1 + L)^n m(S)$.

Proof.

By definition of the (outer) Lebesgue measure in \mathbb{R}^n , it suffices to prove the case where S is a cube (ball for the sup norm). But since $\text{Lip}(\psi) = 1 + L$, the inequality is obvious for cubes. \square

Recall the statement we want to prove.

Corollary 2 (Arnold)

There exists $\varepsilon_0 = \varepsilon_0(\gamma, \tau, P) > 0$ and $\tilde{C} = \tilde{C}(\tau) > 1$ such that for all $|\varepsilon| \leq \varepsilon_0$, if $\tilde{K}_{\gamma, \varepsilon}^\tau$ is the set of $I \in \mathbb{T}^n$ such that $A_{I, \varepsilon}$ is analytically conjugated to T_α for some $\alpha \in K_\gamma^\tau$, then

$$m\left(\mathbb{T}^n \setminus \tilde{K}_{\gamma, \varepsilon}^\tau\right) \leq \tilde{C}\gamma.$$

Proof of Corollary 2

KAM normal form II

Abed Bounemoura

Proof of Corollary 2

Apply the KAM normal form to each $I = \alpha \in K = K_\gamma^\tau$ and we find $v_\varepsilon(\alpha) \in \mathbb{R}^n$, $\text{Lip}(v_\varepsilon) \leq 1/2$, such that $A_{\alpha - v_\varepsilon(\alpha)}$ is analytically conjugated to T_α , so $\tilde{K}_{\gamma, \varepsilon}^\tau$ contains

$$\tilde{K}_\varepsilon := \{\alpha - v_\varepsilon(\alpha) \mid \alpha \in K\}.$$

Proof of Corollary 2

Apply the KAM normal form to each $I = \alpha \in K = K_\gamma^\tau$ and we find $v_\varepsilon(\alpha) \in \mathbb{R}^n$, $\text{Lip}(v_\varepsilon) \leq 1/2$, such that $A_{\alpha - v_\varepsilon(\alpha)}$ is analytically conjugated to T_α , so $\tilde{K}_{\gamma, \varepsilon}^\tau$ contains

$$\tilde{K}_\varepsilon := \{\alpha - v_\varepsilon(\alpha) \mid \alpha \in K\}.$$

Apply Lemma 1 to extend $v_\varepsilon(\alpha)$, $\alpha \in K$ to $v_\varepsilon(I)$, $I \in \mathbb{T}^n$ with the same Lipschitz constant.

Proof of Corollary 2

Apply the KAM normal form to each $I = \alpha \in K = K_\gamma^\tau$ and we find $v_\varepsilon(\alpha) \in \mathbb{R}^n$, $\text{Lip}(v_\varepsilon) \leq 1/2$, such that $A_{\alpha - v_\varepsilon(\alpha)}$ is analytically conjugated to T_α , so $\tilde{K}_{\gamma, \varepsilon}^\tau$ contains

$$\tilde{K}_\varepsilon := \{\alpha - v_\varepsilon(\alpha) \mid \alpha \in K\}.$$

Apply Lemma 1 to extend $v_\varepsilon(\alpha)$, $\alpha \in K$ to $v_\varepsilon(I)$, $I \in \mathbb{T}^n$ with the same Lipschitz constant. Let $\psi_\varepsilon(I) = I - v_\varepsilon(I)$ and write

$$\tilde{K}_\varepsilon = \psi_\varepsilon(K).$$

Proof of Corollary 2

Apply the KAM normal form to each $I = \alpha \in K = K_\gamma^\tau$ and we find $v_\varepsilon(\alpha) \in \mathbb{R}^n$, $\text{Lip}(v_\varepsilon) \leq 1/2$, such that $A_{\alpha - v_\varepsilon(\alpha)}$ is analytically conjugated to T_α , so $\tilde{K}_{\gamma, \varepsilon}^\tau$ contains

$$\tilde{K}_\varepsilon := \{\alpha - v_\varepsilon(\alpha) \mid \alpha \in K\}.$$

Apply Lemma 1 to extend $v_\varepsilon(\alpha)$, $\alpha \in K$ to $v_\varepsilon(I)$, $I \in \mathbb{T}^n$ with the same Lipschitz constant. Let $\psi_\varepsilon(I) = I - v_\varepsilon(I)$ and write

$$\tilde{K}_\varepsilon = \psi_\varepsilon(K).$$

By Lemma 2, $\psi_\varepsilon : \mathbb{T}^n \rightarrow \mathbb{T}^n$ is a bijection hence

$$\mathbb{T}^n \setminus \tilde{K}_\varepsilon = \mathbb{T}^n \setminus \psi_\varepsilon(K) = \psi_\varepsilon(\mathbb{T}^n) \setminus \psi_\varepsilon(K) = \psi_\varepsilon(\mathbb{T}^n \setminus K)$$

Proof of Corollary 2

Apply the KAM normal form to each $I = \alpha \in K = K_\gamma^\tau$ and we find $v_\varepsilon(\alpha) \in \mathbb{R}^n$, $\text{Lip}(v_\varepsilon) \leq 1/2$, such that $A_{\alpha - v_\varepsilon(\alpha)}$ is analytically conjugated to T_α , so $\tilde{K}_{\gamma, \varepsilon}^\tau$ contains

$$\tilde{K}_\varepsilon := \{\alpha - v_\varepsilon(\alpha) \mid \alpha \in K\}.$$

Apply Lemma 1 to extend $v_\varepsilon(\alpha)$, $\alpha \in K$ to $v_\varepsilon(I)$, $I \in \mathbb{T}^n$ with the same Lipschitz constant. Let $\psi_\varepsilon(I) = I - v_\varepsilon(I)$ and write

$$\tilde{K}_\varepsilon = \psi_\varepsilon(K).$$

By Lemma 2, $\psi_\varepsilon : \mathbb{T}^n \rightarrow \mathbb{T}^n$ is a bijection hence

$$\mathbb{T}^n \setminus \tilde{K}_\varepsilon = \mathbb{T}^n \setminus \psi_\varepsilon(K) = \psi_\varepsilon(\mathbb{T}^n) \setminus \psi_\varepsilon(K) = \psi_\varepsilon(\mathbb{T}^n \setminus K)$$

so applying Lemma 3 to $S = \mathbb{T}^n \setminus K$ we arrive at

$$m(\mathbb{T}^n \setminus \tilde{K}_\varepsilon) = m(\psi_\varepsilon(\mathbb{T}^n \setminus K)) \leq (3/2)^n m(\mathbb{T}^n \setminus K) \leq \tilde{C}\gamma.$$

Some comments: frequency mapping

KAM normal form II

Abed Bounemoura

Some comments: frequency mapping

The inverse $\varphi_\varepsilon = \text{Id} + u_\varepsilon$ of $\psi_\varepsilon = \text{Id} - v_\varepsilon$ is a **frequency mapping**: for every I such that $\varphi_\varepsilon(I) \in K_\gamma^\tau$, then $F_{I,\varepsilon}$ is conjugated to $T_{\varphi_\varepsilon(I)}$.

Some comments: frequency mapping

The inverse $\varphi_\varepsilon = \text{Id} + u_\varepsilon$ of $\psi_\varepsilon = \text{Id} - v_\varepsilon$ is a **frequency mapping**: for every I such that $\varphi_\varepsilon(I) \in K_\gamma^\tau$, then $F_{I,\varepsilon}$ is conjugated to $T_{\varphi_\varepsilon(I)}$.

Replacing I by $\omega(I) = \omega_0(I)$, a frequency mapping is

$$\varphi_\varepsilon(\omega(I)) = \omega(I) + u_\varepsilon(\omega(I)) := \omega_\varepsilon(I).$$

Some comments: frequency mapping

The inverse $\varphi_\varepsilon = \text{Id} + u_\varepsilon$ of $\psi_\varepsilon = \text{Id} - v_\varepsilon$ is a **frequency mapping**: for every I such that $\varphi_\varepsilon(I) \in K_\gamma^\tau$, then $F_{I,\varepsilon}$ is conjugated to $T_{\varphi_\varepsilon(I)}$.

Replacing I by $\omega(I) = \omega_0(I)$, a frequency mapping is

$$\varphi_\varepsilon(\omega(I)) = \omega(I) + u_\varepsilon(\omega(I)) := \omega_\varepsilon(I).$$

If $\omega(I)$ is a local C^1 -diffeomorphism and $\text{Lip}(u_\varepsilon)$ small enough, then $\omega_\varepsilon(I)$ is a local lioeomorphism.

Some comments: frequency mapping

The inverse $\varphi_\varepsilon = \text{Id} + u_\varepsilon$ of $\psi_\varepsilon = \text{Id} - v_\varepsilon$ is a **frequency mapping**: for every I such that $\varphi_\varepsilon(I) \in K_\gamma^\tau$, then $F_{I,\varepsilon}$ is conjugated to $T_{\varphi_\varepsilon(I)}$.

Replacing I by $\omega(I) = \omega_0(I)$, a frequency mapping is

$$\varphi_\varepsilon(\omega(I)) = \omega(I) + u_\varepsilon(\omega(I)) := \omega_\varepsilon(I).$$

If $\omega(I)$ is a local C^1 -diffeomorphism and $\text{Lip}(u_\varepsilon)$ small enough, then $\omega_\varepsilon(I)$ is a local lioeomorphism. The set of “good” parameters I_ε and “good” vectors $\omega_\varepsilon(I_\varepsilon)$ both have positive measure, and one can choose $\omega_\varepsilon(I_\varepsilon) = \omega(I)$ (good frequencies can be prescribed).

Some comments: frequency mapping

The inverse $\varphi_\varepsilon = \text{Id} + u_\varepsilon$ of $\psi_\varepsilon = \text{Id} - v_\varepsilon$ is a **frequency mapping**: for every I such that $\varphi_\varepsilon(I) \in K_\gamma^\tau$, then $F_{I,\varepsilon}$ is conjugated to $T_{\varphi_\varepsilon(I)}$.

Replacing I by $\omega(I) = \omega_0(I)$, a frequency mapping is

$$\varphi_\varepsilon(\omega(I)) = \omega(I) + u_\varepsilon(\omega(I)) := \omega_\varepsilon(I).$$

If $\omega(I)$ is a local C^1 -diffeomorphism and $\text{Lip}(u_\varepsilon)$ small enough, then $\omega_\varepsilon(I)$ is a local liopeomorphism. The set of “good” parameters I_ε and “good” vectors $\omega_\varepsilon(I_\varepsilon)$ both have positive measure, and one can choose $\omega_\varepsilon(I_\varepsilon) = \omega(I)$ (good frequencies can be prescribed).

If $d \geq 1$ and $I \in \mathbb{R}^d \mapsto \omega(I) \in \mathbb{R}^n$ is C^l -curved for some $l \geq 1$ and u_ε is C^l -small, then $\omega_\varepsilon(I)$ is still C^l -curved.

Some comments: frequency mapping

The inverse $\varphi_\varepsilon = \text{Id} + u_\varepsilon$ of $\psi_\varepsilon = \text{Id} - v_\varepsilon$ is a **frequency mapping**: for every I such that $\varphi_\varepsilon(I) \in K_\gamma^\tau$, then $F_{I,\varepsilon}$ is conjugated to $T_{\varphi_\varepsilon(I)}$.

Replacing I by $\omega(I) = \omega_0(I)$, a frequency mapping is

$$\varphi_\varepsilon(\omega(I)) = \omega(I) + u_\varepsilon(\omega(I)) := \omega_\varepsilon(I).$$

If $\omega(I)$ is a local C^1 -diffeomorphism and $\text{Lip}(u_\varepsilon)$ small enough, then $\omega_\varepsilon(I)$ is a local liopeomorphism. The set of “good” parameters I_ε and “good” vectors $\omega_\varepsilon(I_\varepsilon)$ both have positive measure, and one can choose $\omega_\varepsilon(I_\varepsilon) = \omega(I)$ (good frequencies can be prescribed).

If $d \geq 1$ and $I \in \mathbb{R}^d \mapsto \omega(I) \in \mathbb{R}^n$ is C^l -curved for some $l \geq 1$ and u_ε is C^l -small, then $\omega_\varepsilon(I)$ is still C^l -curved. The set of good parameters for a curved map has positive measure (Pyartli),

Some comments: frequency mapping

The inverse $\varphi_\varepsilon = \text{Id} + u_\varepsilon$ of $\psi_\varepsilon = \text{Id} - v_\varepsilon$ is a **frequency mapping**: for every I such that $\varphi_\varepsilon(I) \in K_\gamma^\tau$, then $F_{I,\varepsilon}$ is conjugated to $T_{\varphi_\varepsilon(I)}$.

Replacing I by $\omega(I) = \omega_0(I)$, a frequency mapping is

$$\varphi_\varepsilon(\omega(I)) = \omega(I) + u_\varepsilon(\omega(I)) := \omega_\varepsilon(I).$$

If $\omega(I)$ is a local C^1 -diffeomorphism and $\text{Lip}(u_\varepsilon)$ small enough, then $\omega_\varepsilon(I)$ is a local liopeomorphism. The set of “good” parameters I_ε and “good” vectors $\omega_\varepsilon(I_\varepsilon)$ both have positive measure, and one can choose $\omega_\varepsilon(I_\varepsilon) = \omega(I)$ (good frequencies can be prescribed).

If $d \geq 1$ and $I \in \mathbb{R}^d \mapsto \omega(I) \in \mathbb{R}^n$ is C^l -curved for some $l \geq 1$ and u_ε is C^l -small, then $\omega_\varepsilon(I)$ is still C^l -curved. The set of good parameters for a curved map has positive measure (Pyartli), but not the set of good frequencies: the set of $\omega_\varepsilon(I_\varepsilon)$ may be disjoint from $\omega(I)$.