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KAM normal form

Theorem (Arnold)

Fix γ > 0 and τ > n. Then for any α ∈ K τ
γ and any real-analytic

P : Tn → Rn sufficiently close to zero, there exist a unique couple (U, v)
close to zero, where U : Tn → Rn is real-analytic with zero average and
v ∈ Rn, such that for F = Tα + P and Φ = Id + U, we have

Φ ◦ (F − v) ◦ Φ−1 = Tα.

Moreover, U = U(α,P) and v = v(α,P) depend
(1) smoothly on α (extend to smooth functions in α ∈ Tn)
(2) analytically in P (analytic in ε ∈ R if ε 7→ Pε is analytic)
(3) and we have the estimates

Lipθ(U) ≤ 1/2, Lipα(u) ≤ 1/2.

Beware that U and v are uniquely defined, and that the conjugacy holds
true, only for α ∈ K τ

γ !
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Rigidity of Diophantine translation

Let F : Tn → Tn homeomorphism homotopic to the identity, M(F ) 6= ∅
the set of its invariant Borel probability measures. For µ ∈M(F ),
define its rotation vector µ(F ) ∈ Tn and the rotation set Rot(F ) ⊆ Tn

µ(F ) :=

∫
Tn

(F−Id)dµ mod Zn, Rot(F ) := {µ(F ) ∈ Tn | µ ∈M(F )}.

If µ is ergodic, then µ-ae by the Birkhoff ergodic theorem we have:

lim
n→+∞

F n(x)− x

n
= µ(F ) ∈ Rn.

For n = 1, Rot(F ) = {ρ(F )} and supn∈N |F n − Id− nρ(F )|C0 < +∞.

The rotation set is invariant by conjugacy: if F∗ = Φ ◦ F ◦ Φ−1 and
µ ∈M(F ), then µ∗ = Φ∗µ ∈M(F∗) and µ(F ) = µ∗(F∗).

Corollary 1

Under the assumptions of the theorem, assume further that α ∈ Rot(F ).
Then v = v(F ) = 0, that is F is analytically conjugated to Tα.



KAM normal form II

Abed Bounemoura

Rigidity of Diophantine translation

Let F : Tn → Tn homeomorphism homotopic to the identity, M(F ) 6= ∅
the set of its invariant Borel probability measures.

For µ ∈M(F ),
define its rotation vector µ(F ) ∈ Tn and the rotation set Rot(F ) ⊆ Tn

µ(F ) :=

∫
Tn

(F−Id)dµ mod Zn, Rot(F ) := {µ(F ) ∈ Tn | µ ∈M(F )}.

If µ is ergodic, then µ-ae by the Birkhoff ergodic theorem we have:

lim
n→+∞

F n(x)− x

n
= µ(F ) ∈ Rn.

For n = 1, Rot(F ) = {ρ(F )} and supn∈N |F n − Id− nρ(F )|C0 < +∞.

The rotation set is invariant by conjugacy: if F∗ = Φ ◦ F ◦ Φ−1 and
µ ∈M(F ), then µ∗ = Φ∗µ ∈M(F∗) and µ(F ) = µ∗(F∗).

Corollary 1

Under the assumptions of the theorem, assume further that α ∈ Rot(F ).
Then v = v(F ) = 0, that is F is analytically conjugated to Tα.



KAM normal form II

Abed Bounemoura

Rigidity of Diophantine translation

Let F : Tn → Tn homeomorphism homotopic to the identity, M(F ) 6= ∅
the set of its invariant Borel probability measures. For µ ∈M(F ),
define its rotation vector µ(F ) ∈ Tn and the rotation set Rot(F ) ⊆ Tn

µ(F ) :=

∫
Tn

(F−Id)dµ mod Zn, Rot(F ) := {µ(F ) ∈ Tn | µ ∈M(F )}.

If µ is ergodic, then µ-ae by the Birkhoff ergodic theorem we have:

lim
n→+∞

F n(x)− x

n
= µ(F ) ∈ Rn.

For n = 1, Rot(F ) = {ρ(F )} and supn∈N |F n − Id− nρ(F )|C0 < +∞.

The rotation set is invariant by conjugacy: if F∗ = Φ ◦ F ◦ Φ−1 and
µ ∈M(F ), then µ∗ = Φ∗µ ∈M(F∗) and µ(F ) = µ∗(F∗).

Corollary 1

Under the assumptions of the theorem, assume further that α ∈ Rot(F ).
Then v = v(F ) = 0, that is F is analytically conjugated to Tα.



KAM normal form II

Abed Bounemoura

Rigidity of Diophantine translation

Let F : Tn → Tn homeomorphism homotopic to the identity, M(F ) 6= ∅
the set of its invariant Borel probability measures. For µ ∈M(F ),
define its rotation vector µ(F ) ∈ Tn and the rotation set Rot(F ) ⊆ Tn

µ(F ) :=

∫
Tn

(F−Id)dµ mod Zn, Rot(F ) := {µ(F ) ∈ Tn | µ ∈M(F )}.

If µ is ergodic, then µ-ae by the Birkhoff ergodic theorem we have:

lim
n→+∞

F n(x)− x

n
= µ(F ) ∈ Rn.

For n = 1, Rot(F ) = {ρ(F )} and supn∈N |F n − Id− nρ(F )|C0 < +∞.

The rotation set is invariant by conjugacy: if F∗ = Φ ◦ F ◦ Φ−1 and
µ ∈M(F ), then µ∗ = Φ∗µ ∈M(F∗) and µ(F ) = µ∗(F∗).

Corollary 1

Under the assumptions of the theorem, assume further that α ∈ Rot(F ).
Then v = v(F ) = 0, that is F is analytically conjugated to Tα.



KAM normal form II

Abed Bounemoura

Rigidity of Diophantine translation

Let F : Tn → Tn homeomorphism homotopic to the identity, M(F ) 6= ∅
the set of its invariant Borel probability measures. For µ ∈M(F ),
define its rotation vector µ(F ) ∈ Tn and the rotation set Rot(F ) ⊆ Tn

µ(F ) :=

∫
Tn

(F−Id)dµ mod Zn, Rot(F ) := {µ(F ) ∈ Tn | µ ∈M(F )}.

If µ is ergodic, then µ-ae by the Birkhoff ergodic theorem we have:

lim
n→+∞

F n(x)− x

n
= µ(F ) ∈ Rn.

For n = 1, Rot(F ) = {ρ(F )} and supn∈N |F n − Id− nρ(F )|C0 < +∞.

The rotation set is invariant by conjugacy: if F∗ = Φ ◦ F ◦ Φ−1 and
µ ∈M(F ), then µ∗ = Φ∗µ ∈M(F∗) and µ(F ) = µ∗(F∗).

Corollary 1

Under the assumptions of the theorem, assume further that α ∈ Rot(F ).
Then v = v(F ) = 0, that is F is analytically conjugated to Tα.



KAM normal form II

Abed Bounemoura

Rigidity of Diophantine translation

Let F : Tn → Tn homeomorphism homotopic to the identity, M(F ) 6= ∅
the set of its invariant Borel probability measures. For µ ∈M(F ),
define its rotation vector µ(F ) ∈ Tn and the rotation set Rot(F ) ⊆ Tn

µ(F ) :=

∫
Tn

(F−Id)dµ mod Zn, Rot(F ) := {µ(F ) ∈ Tn | µ ∈M(F )}.

If µ is ergodic, then µ-ae by the Birkhoff ergodic theorem we have:

lim
n→+∞

F n(x)− x

n
= µ(F ) ∈ Rn.

For n = 1, Rot(F ) = {ρ(F )} and supn∈N |F n − Id− nρ(F )|C0 < +∞.

The rotation set is invariant by conjugacy: if F∗ = Φ ◦ F ◦ Φ−1 and
µ ∈M(F ), then µ∗ = Φ∗µ ∈M(F∗) and µ(F ) = µ∗(F∗).

Corollary 1

Under the assumptions of the theorem, assume further that α ∈ Rot(F ).
Then v = v(F ) = 0, that is F is analytically conjugated to Tα.



KAM normal form II

Abed Bounemoura

Rigidity of Diophantine translation

Let F : Tn → Tn homeomorphism homotopic to the identity, M(F ) 6= ∅
the set of its invariant Borel probability measures. For µ ∈M(F ),
define its rotation vector µ(F ) ∈ Tn and the rotation set Rot(F ) ⊆ Tn

µ(F ) :=

∫
Tn

(F−Id)dµ mod Zn, Rot(F ) := {µ(F ) ∈ Tn | µ ∈M(F )}.

If µ is ergodic, then µ-ae by the Birkhoff ergodic theorem we have:

lim
n→+∞

F n(x)− x

n
= µ(F ) ∈ Rn.

For n = 1, Rot(F ) = {ρ(F )} and supn∈N |F n − Id− nρ(F )|C0 < +∞.

The rotation set is invariant by conjugacy: if F∗ = Φ ◦ F ◦ Φ−1 and
µ ∈M(F ), then µ∗ = Φ∗µ ∈M(F∗) and µ(F ) = µ∗(F∗).

Corollary 1

Under the assumptions of the theorem, assume further that α ∈ Rot(F ).
Then v = v(F ) = 0, that is F is analytically conjugated to Tα.



KAM normal form II

Abed Bounemoura

Rigidity of Diophantine translation: proof

For F = Tα + P, we have v ∈ Rn and Φ = Id + U such that

Φ ◦ (F − v) ◦ Φ−1 = Tα.

Let F∗ = Φ ◦ F ◦ Φ−1, then

F∗ = Id + α + v + X , X := U ◦ (F ◦ Φ−1)− U ◦ (F ◦ Φ−1 − v).

By assumption, α ∈ Rot(F ) = Rot(F∗), and let µ∗ such that
µ∗(F∗) = α.∫

Tn

(F∗ − Id)dµ∗ = α⇐⇒ v = −
∫
Tn

Xdµ∗ ∈ Rn.

Taking the supremum norm on Tn this gives

|v | ≤ sup
θ∈Tn
|X (θ)| ≤ Lip(U)|v | ≤ |v |/2.

Hence v = 0.
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Arnold family of torus maps

Fix α0 ∈ K τ
γ , P : Tn → Rn real-analytic and consider the following

“deformation” of Fε = Tα0 + εP, ε ∈ R:

θ ∈ Tn 7−→ Fε(θ) + I = θ + α0 + I + εP(θ) ∈ Tn

where I ∈ Tn are parameters. Translating parameters, consider

AI ,ε : θ ∈ Tn 7→ θ + I + εP(θ) ∈ Tn.

Corollary 2 (Arnold)

There exists ε0 = ε0(γ, τ,P) > 0 and C̃ = C̃(τ) > 1 such that for all
|ε| ≤ ε0, if K̃ τ

γ,ε is the set of I ∈ Tn such that AI ,ε is analytically
conjugated to Tα for some α ∈ K τ

γ , then

m
(
Tn \ K̃ τ

γ,ε

)
≤ C̃γ.

We will see that ε0 = c(τ,P)γ = cγ for some c < 1, so choosing

γ = ε/c we have m
(
Tn \ K̃ τ

ε/c,ε

)
≤ C̃ε/c for ε small enough.
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Family of torus maps: some comments

Corollary 2 holds true if we replace I 7→ I in the definition of AI ,ε by a
local C 1-diffeomorphism I ∈ Rn 7→ ω(I ) ∈ Rn (“unperturbed frequency
map”), provided ε0 = ε0(γ, τ,P, ω).

Also true under weaker non-degeneracy: I ∈ Rd for some d ≥ 1 and
ω : Rd → Rn is “curved”: all partial derivatives of ω of order ≥ 1
generate Rn (Rüssmann). This requires smoothness of α 7→ v(α, ε).

Let Pε an analytic family in ε ∈ Rn with P0 = 0 and consider

Hα0,ε : θ ∈ Tn 7→ θ + α0 + Pε(θ) ∈ Tn.

For n = 1, ε = 0 is a density point of the the set of ε for which Hα0,ε is
analytically conjugated to translation. This requires analyticity of
ε 7→ v(α, ε). For n ≥ 2 nothing is known.
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Lipschitz maps

Let (E , d) be a metric space, a map u : E → Rn is Lipschitz if

Lip(u) := sup
I 6=I ′

|u(I )− u(I ′)|
d(I , I ′)

< +∞.

For I0 ∈ E , the map I ∈ E 7→ d(I , I0) ∈ R is 1-Lipschitz. If K ⊆ E , then
I ∈ E 7→ d(I ,K) = inf I0∈K d(I , I0) ∈ R is 1-Lipschitz. More generally,
let K be any set, vα : E → R for α ∈ K and assume that Lip(vα) ≤ L.
If v(I ) := infα∈K vα(I ) is finite at one point, then Lip(v) ≤ L.

If v : Tn → Rn is C 1, since Rn is convex we have

Lip(v) = sup
I∈Tn
|Dv(I )| := sup

I∈Tn
sup

e∈Rn, |e|=1

|Dv(I )e| = sup
I∈Tn

∑
|l|=1

|∂ lv(I )|.

Lip(v1 + v2) ≤ Lip(v1) + Lip(v2)
Lip(v1 ◦ (Id + v2)) ≤ Lip(v1)(1 + Lip(v2)).
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Lipschitz maps: extension

Lemma 1
Let (E , d) be a metric space, K ⊆ E a subset and v : K → Rn

Lipschitz. Then v extends to v̂ : E → Rn with Lip(v̂) = Lip(v).

Proof.
It suffices to extend each component of v , hence we assume v : K → R.
Let L = Lip(v), for α ∈ K , define v̂α : E → R, v̂ : E → R

v̂α(I ) := v(α) + Ld(I , α), v̂(I ) = inf
α∈K

v̂α(I ).

Obviously Lip(v̂α) = L for any α ∈ K hence Lip(v̂) = L provided v̂ is
finite at one point. Hence it suffices to show that v̂ extends v . But for
any I ∈ K and α ∈ K , v(I ) ≤ vα(I ) = v(α) + Ld(I , α), hence
v(I ) ≤ v̂(I ) and then v(I ) = v̂(I ) (the inf is reached at α = I ).

For simplicity, we shall write v̂ = v . The extension is not unique!
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Lipschitz maps: inverse

Lemma 2
Let ψ = Id− v : Tn → Tn with v : Tn → Rn such that Lip(v) < 1.
Then it is a Lipeomorphism: it has a unique inverse ϕ = Id + u with
|u|C0 ≤ |v |C0 and Lip(u) ≤ Lip(v)(1− Lip(v))−1.

Proof.
Let L = Lip(v), v∗ = |v |C0 , L∗ = L(1− L)−1 and

B∗ := {u ∈ C 0(Tn) | |u|C0 ≤ u∗, Lip(u) ≤ L∗}.

It is a closed subspace of a Banach space, hence it is complete. Then
Id + u is a (right, but also left) inverse of Id− v iff

Pv (u) := v ◦ (Id + u) = u.

Pv (B∗) ⊆ B∗: |Pv (u)|C0 ≤ v∗ and Lip(Pv (u)) ≤ L(1 + L∗) = L∗.
Pv contracts B∗: |Pv (u1)− Pv (u2)|C0 ≤ Lip(v)|u1 − u2|C0 .
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Lipschitz maps: measure estimates

Lemma 3
Let ψ = Id− v : Tn → Tn with Lip(v) ≤ L. Then for any measurable
subset S ⊆ Tn, m(ψ(S)) ≤ (1 + L)nm(S).

Proof.
By definition of the (outer) Lebesgue measure in Rn, it suffices to prove
the case where S is a cube (ball for the sup norm). But since
Lip(ψ) = 1 + L, the inequality is obvious for cubes.

Recall the statement we want to prove.

Corollary 2 (Arnold)

There exists ε0 = ε0(γ, τ,P) > 0 and C̃ = C̃(τ) > 1 such that for all
|ε| ≤ ε0, if K̃ τ

γ,ε is the set of I ∈ Tn such that AI ,ε is analytically
conjugated to Tα for some α ∈ K τ

γ , then

m
(
Tn \ K̃ τ

γ,ε

)
≤ C̃γ.
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Proof of Corollary 2

Apply the KAM normal form to each I = α ∈ K = K τ
γ and we find

vε(α) ∈ Rn, Lip(vε) ≤ 1/2, such that Aα−vε(α) is analytically

conjugated to Tα, so K̃ τ
γ,ε contains

K̃ε := {α− vε(α) | α ∈ K}.

Apply Lemma 1 to extend vε(α), α ∈ K to vε(I ), I ∈ Tn with the same
Lipschitz constant. Let ψε(I ) = I − vε(I ) and write

K̃ε = ψε(K).

By Lemma 2, ψε : Tn → Tn is a bijection hence

Tn \ K̃ε = Tn \ ψε(K) = ψε(Tn) \ ψε(K) = ψε(Tn \ K)

so applying Lemma 3 to S = Tn \ K we arrive at

m(Tn \ K̃ε) = m(ψε(Tn \ K)) ≤ (3/2)nm(Tn \ K) ≤ C̃γ.
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Some comments: frequency mapping

The inverse ϕε = Id + uε of ψε = Id− vε is a frequency mapping: for
every I such that ϕε(I ) ∈ K τ

γ , then FI ,ε is conjugated to Tϕε(I ).

Replacing I by ω(I ) = ω0(I ), a frequency mapping is

ϕε(ω(I )) = ω(I ) + uε(ω(I )) := ωε(I ).

If ω(I ) is a local C 1-diffeomorphism and Lip(uε) small enough, then
ωε(I ) is a local lipeomorphism. The set of “good” parameters Iε and
“good” vectors ωε(Iε) both have positive measure, and one can choose
ωε(Iε) = ω(I ) (good frequencies can be prescribed).

If d ≥ 1 and I ∈ Rd 7→ ω(I ) ∈ Rn is C l -curved for some l ≥ 1 and uε is
C l -small, then ωε(I ) is still C l -curved. The set of good parameters for a
curved map has positive measure (Pyartli), but not the set of good
frequencies: the set of ωε(Iε) may be disjoint from ω(I ).
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