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Analytic functions

A smooth vector field P : Tn → Rn equals its Fourier series:

P(θ) =
∑
k∈Zn

Pke
2πik·θ, Pk :=

∫
Tn

P(θ)e−2πik·θdx = P−k ∈ Cn.

We say that P is analytic if there exists s > 0 such that

|P|s :=
∑
k∈Zn

|Pk |e2πs|k| < +∞.

Convention: for k = (k1, . . . , kn) ∈ Zn, x = (x1, . . . , xn) ∈ Cn

|k| = |k1|+ · · · |kn|, |x | = sup{|x1|, . . . , |xn|}.

If we define complex s-neighborhood of Rn and Tn by

Rn
s := {x ∈ Cn | d(x ,Rn) = |Im x | < s}, Tn

s := Rn
s /Zn

then P extends to a holomorphic vector field P : Tn
s → Cn and

||P||s := sup
θ∈Tn

s

|P(θ)| ≤ |P|s .
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KAM normal form

Theorem (Arnold)

Fix γ > 0, τ > n and 0 < s ≤ 1, and define

C̄ := (τ + 1)!4−1(2π)−τ , C∗ := C̄n2616τ+1 > 1, c∗ = (4C∗)
−1 < 1.

Then for any α ∈ K τ
γ and any real-analytic P : Tn → Rn satisfying

ε := |P|s ≤ c∗γs
τ+1

there exist a unique couple (U, v), where U : Tn → Rn is real-analytic
with zero average and v ∈ Rn, such that for F = Tα + P, Φ = Id + U
and Ψ = Φ−1 = Id− V , we have

Φ ◦ (F − v) ◦ Φ−1 = Tα.

with the estimates

|V |s/2 ≤ |U|s/2 ≤
C∗ε

γsτ
≤ s/4, |DV |s/2 ≤ 2|DU|s/2 ≤

2C∗ε

γsτ+1
≤ 1/2,

|v | ≤ 2ε, Lipα(v) ≤ 2C∗ε

γsτ+1
≤ 1/2.
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Properties of analytic functions (Fourier norm)

(1) Product. P,Q : Tn
s → C, |PQ|s ≤ |P|s |Q|s

(2) Derivative. P : Tn
s → Cn and 0 < σ ≤ s

∑
l∈Nn

σ|l|

l!
|∂ lP|s−σ ≤ |P|s , |DP|s−σ :=

∑
|l|=1

|∂ lP|s−σ ≤ σ−1|P|s .

(3) Composition. 0 < σ ≤ s, U : Tn
s−σ → Cn, |U|s−σ ≤ σ

|P ◦ (Id+U)|s−σ ≤ |P|s , |P ◦ (Id+U)−P|s−σ ≤ σ−1|U|s−σ|P|s .

(4) Taylor. 0 < σ ≤ s, U1,U2 : Tn
s−σ → Cn, |Ui |s−σ ≤ σ

|P ◦ (Id + U1)− P ◦ (Id + U2)|s−σ ≤ |DP|s |U1 − U2|s−σ.

(5) Inverse. 0 < 2σ ≤ s, |U|s−σ ≤ σ, |DU|s−σ < 1, then
Φ = Id + U : Tn

s−σ → Cn is an analytic embedding such that
Tn

s−2σ ⊆ Φ(Tn
s−σ) ⊆ Tn

s and Φ−1 = Id− V with

|V |s−2σ ≤ |U|s−σ, |DV |s−2σ ≤ |DU|s−σ(1− |DU|s−σ)−1.
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Properties of analytic functions: proof (n = 1)

Points (1) and (2):

|PQ|s =
∑
k∈Z

∣∣∣∣∣∣
∑
m≤k

PmQk−m

∣∣∣∣∣∣ e2πs|k| ≤
∑
k,m

|Pm||Qk−m||e2πs|m||e2πs|k−m|

∑
l∈N

(l!)−1σl |∂ lP|s−σ ≤
∑
l∈N

∑
k∈Z

(l!)−1(σ2π|k|)l |Pk |e2π(s−σ)|k| = |P|s .

Point (3) follows from (1), (2) and analyticity: we can write

P(θ + X (θ)) =
∑
l∈N

(l!)−1(∂ lP(θ))X l(θ), θ ∈ Tn
s−σ

|P ◦ (Id + X )|s−σ ≤
∑
l∈N

(l!)−1|∂ lP|s−σ|X |ls−σ ≤ |P|s

|P ◦ (Id + X )− P|s−σ ≤
∑
l≥1

(l!)−1|∂ lP|s−σ||X |ls−σ ≤ σ−1|X |s−σ|P|s .

Point (4) follows from (1), (3) and Taylor formula. Point (5) follows
from (3), (4) and the contraction principle.
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Conjugacy and cohomological equation

Given P : Tn → Rn, we want to find (U, v) or (V , v) such that

(Id + U) ◦ (F − v) = Tα ◦ (Id + U) ⇔ U − U ◦ (F − v) = P − v .

(Id−V)◦Tα = (F−v)◦(Id−V ) ⇔ V−V ◦(Id + α) = P◦(Id−V )−v .

Since P ∼ ε, one expects U ∼ ε, V ∼ ε, v ∼ ε hence

U ◦ (F − v)− U ◦ (Id + α) = O(ε2), P ◦ (Id− V )− P = O(ε2).

The cohomological equation, or linearized conjugacy equation, amounts
to find (Ũ, ũ) or (Ṽ , ṽ) such that

Ũ − Ũ ◦ (Id + α) = P − ũ, Ṽ − Ṽ ◦ (Id + α) = P − ṽ .

This can be solved in the space of formal Fourier series: ũ = [P] = P0

Ũk − e2πik·αŨk = Pk , k ∈ Zn \ {0}

⇐⇒ Ũk =
Pk

1− e2πik·α
, k ∈ Zn \ {0}.

Solution is unique if Ũ0 = 0. If P is real (Pk = P−k) then so is Ũ.
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Cohomological equation

Proposition

For any P real-analytic, there exists a unique couple (Ũ, ũ)

Ũ − Ũ ◦ (Id + α) = P − ũ

and for any 0 < σ ≤ s, setting C̄ = (τ + 1)!4−1(2π)−τ ,

|ũ| ≤ |P|s , |Ũ|s−σ ≤
C̄

γστ
|P|s , |DŨ|s−σ ≤

C̄

γστ+1
|P|s .

Proof.
Since |1− e2πik·α| = 2| sin(πk · α)| ≥ 4|k · α|Z ≥ 4γ|k|−τ :

|Ũ|s−σ ≤ 1

4γ

∑
k∈Zn\{0}

|k|τe−2πσ|k||Pk |e2πs|k|

≤ 1

4γ

(
sup

k∈Zn\{0}
|k|τe−2πσ|k|

)
|P|r ≤

τ !

4γ(2πσ)τ
|P|s .

|DŨ|s−σ ≤
1

4γ

(
sup

k∈Zn\{0}
2π|k|τ+1e−2πσ|k|

)
|P|r ≤

(τ + 1)!

4γ(2πσ)τ+1
|P|s .
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|ũ| ≤ |P|s , |Ũ|s−σ ≤
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Local uniqueness of the KAM normal norm

For any real-analytic P : Tn → Rn satisfying

ε := |P|s ≤ c∗γs
τ+1, c∗ = (4C∗)

−1 < 1, C∗ := C̄n2616τ+1 > 1

assume we have two solutions (V1, v1), (V2, v2) of

Vi −Vi ◦ (Id+α) = P ◦ (Id−Vi )−vi , |Vi |s/2 ≤
C∗ε

γsτ
≤ s/4, i = 1, 2.

Let V̂ = V1 −V2, v̂ = v̂1 − v̂2, P̂ = P ◦ (Id−V1)− P ◦ (Id−V2), then:

V̂ − V̂ ◦ (Id + α) = P̂ − v̂ , v̂ = [P̂].

Using Taylor formula

|P̂|s/4 ≤ |DP|s/2|V̂ |s/4 ≤ 2s−1ε|V̂ |0, |P̂−[P̂]|s/4 ≤ |P̂|s/4 ≤ 2s−1ε|V̂ |0

and using the cohomological equation ([V̂ ] = [V1]− [V2] = 0)

|V̂ |0 ≤
4C̄

γsτ
|P̂ − [P̂]|s/4 ≤

8C̄

γsτ+1
ε|V̂ |0 ≤

C∗
γsτ+1

ε|V̂ |0 ≤ |V̂ |0/4.

Hence V̂ = 0⇒ V1 = V2 ⇒ P̂ = 0⇒ v̂ = 0⇒ v1 = v2.
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Failure of the Picard method (contraction principle)

Let As the space of real-analytic vector fields, A0
s the subspace with

zero-average, and given α ∈ K τ
γ , consider the bounded linear operator

Lα : As → A0
s Lα(V ) = V −V ◦ (Id + α).

Now given P ∈ As , consider the bounded non-linear operator

NP(V ) = P ◦ (Id− V )− v , v = v(V ,P) := [P ◦ (Id− V )].

Then the conjugacy equation can be written as

Lα(V ) = NP(V )⇐⇒ V = Fα,P(V ), Fα,P := L−1
α ◦ NP .

Let ε := |P|s and Bε := {V ∈ A0
s/2 | |V |s/2 ≤ ε}. Then NP is a

contraction of Bε for ε < s/4. If L−1
α were a bounded operator

|L−1
α (X )|s/2 ≤ C |X |s/2, X = NP(V ), C ≥ 1

then Fα,P would be a contraction of BCε for Cε < s/4. Unfortunately

|L−1
α (X )|s/2−σ ≤ C(σ)|X |s/2, 0 < σ ≤ /2, lim

σ→0
C(σ) = +∞.
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Newton method: quadratic remainder

The basic idea is to use Id + Ũ, where Ũ solves the cohomological
equation, to conjugate F = Tα + P to F+ = Tα + P+ with |P+| � |P|.

F+ = (Id + Ũ) ◦ F ◦ (Id + Ũ)−1 = Tα + ũ + R+ = Tα + [P] + R+

R+ =
(
Ũ ◦ (Id + α)− Ũ ◦ (Id + α) ◦ (Id + P)

)
◦ (Id + Ũ)−1.

Problem: |P+| ∼ |ũ|+ |R+| ∼ ε+ ε2 ∼ ε. Temporary solution: forget
about ũ, assume P+ = R+ (this will be achieved using v = ũ + O(ε2)).
Let 0 < σ ≤ s, one can estimate

|R+|s−2σ ≤ |DŨ|s−σ|P|s ≤
C̄ε2

γστ+1
:= C̄(σ)ε2

(assuming C̄(σ) ≤ 1/σ) and assuming ε is small enough so that

C̄(σ)ε < 1/2 =⇒ |P|s ≤ |Ũ|s−σ < σ/2, |DŨ|s−σ < 1/2.
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Problem: |P+| ∼ |ũ|+ |R+| ∼ ε+ ε2 ∼ ε. Temporary solution: forget
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Ũ ◦ (Id + α)− Ũ ◦ (Id + α) ◦ (Id + P)

)
◦ (Id + Ũ)−1.
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Newton method: iteration

For σ to be chosen, we will require C̄(σ)ε ≤ κ for some κ < 1/2. Set
P1 = P+, s1 = s − 2σ, then F = Tα + P is conjugated to F1 = Tα + P1

with |P1|s1 ≤ C̄(σ)ε2 ≤ κε. To proceed by induction, choose

σj := 2−jσ, s0 := s, sj+1 := sj − 2σj , εj := κjε

then F = Tα + P is conjugated to Fj = Tα + Pj with |Pj |sj ≤ εj if,

C̄(σj)εj = (κ/2τ+1)j C̄(σ0)ε0 < 1/2 ⇐= C̄(σ0)ε0 ≤ κ ≤ 2−(τ+1).

Now choose σ = σ0 = s/8 so that sj → s − 4σ ≥ s/2 (and C̄(σ) ≤ 1/σ
since s ≤ 1) and choose κ := 2−(τ+2) so that
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converges

|DU|s/2 ≤ 2
∑
j∈N
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