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A smooth vector field P : T" — R” equals its Fourier series:

PO) =Y P’  Pyi= / P(0)e > Odx = P_, € C".
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We say that P is analytic if there exists s > 0 such that

Pls = > |Pele®™ " < fo0.
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Convention: for k = (ki,...,kn) € Z", x = (X1,...,%2) € C"
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If we define complex s-neighborhood of R"” and T" by
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A smooth vector field P : T" — R” equals its Fourier series:

PO) =Y P’  Pyi= /T P(B)e ™ dx = Py e O

kezn

We say that P is analytic if there exists s > 0 such that

Pls = > |Pele®™ " < fo0.

kezn
Convention: for k = (ki,...,kn) € Z", x = (X1,...,%2) € C"
K| = kil + - [kaly  [x] = sup{lal, . ., xal).
If we define complex s-neighborhood of R"” and T" by
Ry :={x e C"|d(x,R") = |Imx| < s}, Ts:=RJ/Z"
then P extends to a holomorphic vector field P : T — C" and

[IPlls == sup [P(0)] < [P]s.
oeTn
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Theorem (Arnold)
Fixy >0, 7> nand0<s <1, and define

Ci=(+114'2n)7, C.:=Cn2’16""' >1, c.=(4C) " <1
Then for any oo € K and any real-analytic P : T" — R" satisfying
e:=|P|s < cays™ !

there exist a unique couple (U, v), where U : T" — R" is real-analytic
with zero average and v € R", such that for F = T, + P, ®=1d+ U
and ¥ =o' =1d — V, we have

Po(F—v)od '=T,.
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Theorem (Arnold)
Fixy >0, 7> nand0<s <1, and define

Ci=(+114'2n)7, C.:=Cn2’16""' >1, c.=(4C) " <1
Then for any oo € K and any real-analytic P : T" — R" satisfying
e:=|P|s < cays™ !

there exist a unique couple (U, v), where U : T" — R" is real-analytic
with zero average and v € R", such that for F = T, + P, ®=1d+ U
and ¥ =o' =1d — V, we have

Po(F—v)od ' =T,.
with the estimates

Cie 2C.¢e

- <1/2,

|V|s/2 S ‘U‘S/Q S S 5/4, IDV|5/2 S 2|DU|5/2 S

vys™ 5T+

lv| <2, Lip,(v) <
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(1) Product. P,Q : TZ? — C, |PQ|s < |P|s|Q|s
(2) Derivative. P: T - C"and0< o <s
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I
> "T\a’ms,a <|Pls, |DPlso =Y |0'Pleey < 07Y|Pls.
lenn |1]=1
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IPo(ld+ U)ls—o <|Pls, |Po(ld+U)=Plseg <0 '[Uls=o|P]s.
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I
g _
> TWP'H <|Pls, |DPls—g:= [0'Pls—6 <o *|P)s.
lENn []=1
(3) Composition. 0 <o <s, U:Ti_, - C", |U|s—o <0

IPo(ld+ U)ls—o <|Pls, |Po(ld+U)=Plseg <0 '[Uls=o|P]s.

(4) Taylor. 0< o <s, U, U, T7_, - C", |Ui|]s—o < o

|Po(Id+ U1) — Po(Id+ U)|s—s < |[DPls|Ur — Usls—o.

(5) Inverse. 0 < 20 <, |U|s—o <o, |DU|s—s < 1, then
d=Id+ U:T;_, — C" is an analytic embedding such that
" e C ®(TI_,) C T? and &~ = Id — V with

|V]s—20 < |Uls—o, |DV|s—26 < |DU|s—s(1 —|DU|s—o)"".
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Points (1) and (2):

|PQ|5 — Z Z P Qi eZﬂS\H < Z |Pm||Qk7m||e27rs|m\|627rs|k7m\

keZ \m<k k,m

D (N7 'Plso < 30D (M) (o2n|K])' [Pl < |Ps.

IeN 1EN keZ
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Points (1) and (2):

PQIs =Y > PnQim

kEZ |m<k

ST TP < 3TN () o2r k) | Pl T = | P,

IeN 1EN keZ

eZws\k| < Z |Pm||Qk—m||e2ﬂs|m‘ |627rs|k7m\

k,m

Point (3) follows from (1), (2) and analyticity: we can write

PO +X(0) = (INT(9'P@))X'(6), 6T,
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Point (3) follows from (1), (2) and analyticity: we can write

PO +X(0) = (INT(9'P@))X'(6), 6T,
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Point (4) follows from (1), (3) and Taylor formula.
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Properties of analytic functions: proof (n = 1)

Points (1) and (2):

PQIs =Y > PnQim

kEZ |m<k

ST TP < 3TN () o2r k) | Pl T = | P,

IeN 1EN keZ

eZws\k| < Z |Pm||Qk—m||e2ﬂs|m‘ |627rs|k7m\

k,m

Point (3) follows from (1), (2) and analyticity: we can write

PO +X(0) = (INT(9'P@))X'(6), 6T,

IeN

Po(Id+ X)s—o <> (1Y Pls—o|X[s—s < |P|s
1eN

[Po(Id+X) = Pls—g <> (N)7HO'Pls—o|IX|ieo < 0 X[s—o|Pls.

I>1

Point (4) follows from (1), (3) and Taylor formula. Point (5) follows
from (3), (4) and the contraction principle.
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Given P : T" — R", we want to find (U, v) or (V,v) such that
(Id+U)o(F—v)=Tao(Id4+U) & U—-Uo(F—-v)=P—v.

(Id—=V)oTy = (F=v)o(ld—V) & V—-Vo(ld+ )= Po(Ild—V)—v.
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Conjugacy and cohomological equation

Given P : T" — R", we want to find (U, v) or (V,v) such that
(Id+U)o(F—v)=Tao(Id4+U) & U—-Uo(F—-v)=P—v.
(Id—=V)oTy = (F=v)o(ld—V) & V—-Vo(ld+ )= Po(Ild—V)—v.
Since P ~ ¢, one expects U ~ ¢, V ~ ¢, v ~ € hence
Uo(F—v)—Uo(Id+a)=0(s*), Po(ld—V)—P=0().
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to find (U, @) or (V, V) such that

U-Uo(d+a)=P—id, V-Vo(ld+a)=P—7.
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Given P : T" — R", we want to find (U, v) or (V,v) such that

(Id4+U)o(F-v)=Tao(Id+U) <& U—-Uo(F—-v)=P—v.

(Id—=V)oTy = (F=v)o(ld—V) & V—-Vo(ld+ )= Po(Ild—V)—v.

Since P ~ ¢, one expects U ~ ¢, V ~ ¢, v ~ € hence
Uo(F—v)—Uo(Id+a)=0(s*), Po(ld—V)—P=0().

The cohomological equation, or linearized conjugacy equation, amounts

to find (U, i) or (V, V) such that

U-0oc(ld+a)=P—i, V—-Vo(ld+a)=P—7.

This can be solved in the space of formal Fourier series: i = [P] = Po

Uk — 6271-”(“ Uk = Pk, kez" \ {0}

) Pk n




KAM normal form Il

Conjugacy and cohomological equation
Abed Bounemoura

Given P : T" — R", we want to find (U, v) or (V,v) such that
(Id+U)o(F—v)=Tao(Id4+U) & U—-Uo(F—-v)=P—v.
(Id = V)oTy = (F—v)o(Id—V) < V—Vo(Id + ) = Po(Id—V)—v.
Since P ~ ¢, one expects U ~ ¢, V ~ ¢, v ~ € hence
Uo(F—v)—Uo(Id+a)=0(s*), Po(ld—V)—P=0().

The cohomological equation, or linearized conjugacy equation, amounts
to find (U, i) or (V, V) such that
U-0oc(ld+a)=P—i, V—-Vo(ld+a)=P—7.
This can be solved in the space of formal Fourier series: i = [P] = Po
U — e 0y = Py, keZ"\ {0}

) Pk n

Solution is unique if Jy = 0.
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Given P : T" — R", we want to find (U, v) or (V,v) such that
(Id+U)o(F—v)=Tao(Id4+U) & U—-Uo(F—-v)=P—v.
(Id = V)oTy = (F—v)o(Id—V) < V—Vo(Id + ) = Po(Id—V)—v.
Since P ~ ¢, one expects U ~ ¢, V ~ ¢, v ~ € hence
Uo(F—v)—Uo(Id+a)=0(s*), Po(ld—V)—P=0().

The cohomological equation, or linearized conjugacy equation, amounts
to find (U, i) or (V, V) such that
U-0oc(ld+a)=P—i, V—-Vo(ld+a)=P—7.
This can be solved in the space of formal Fourier series: i = [P] = Po
U — e 0y = Py, keZ"\ {0}

) Pk n

Solution is unique if Uy = 0. If P is real (Px = P_x) then so is U.
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Proposition
For any P real-analytic, there exists a unique couple (U, ii)

U-0Ooc(d+a)=P—i

and for any 0 < o < s, setting C = (7 + 1)1471(27)™7,

P, DO, <

oT

la] <|Pls, [|Uls—o < F\Ph-
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Proposition
For any P real-analytic, there exists a unique couple (U, ii)
U-0Ooc(d+a)=P—i

and for any 0 < o < s, setting C = (7 + 1)1471(27)™7,

P, DO, <

oT

|d] < |Pls, |U]s—o <

Proof. _
Since |1 — €™ %| = 2| sin(mk - @)| > 4|k - a|z > 4y|k| "

¥ 1 T _—270o|k| 27s| k|
Oe < & X KR
keZ™\{0}

7-|

SorrilFls

1 T _—2mo|k| :
— sup |k|"e Pl < ————|P|s.
4y <k€Z”\{0}| | 1P 47(27W)T| g
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Proposition
For any P real-analytic, there exists a unique couple (U, ii)

U-0Ooc(d+a)=P—i

and for any 0 < o < s, setting C = (7 + 1)1471(27)™7,

P, DO, <
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Proof. _
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For any real-analytic P : T" — R" satisfying
e=|Pls<cnrs™™, c=04C)'<1, C :=Cn2%16"">1

assume we have two solutions (Vi, v1), (V2, v2) of

Vi—Vio(ld+a) = Po(ld— Vi) —v;, \\/,-\5/2§C*Egs/4, i=12.

ST
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For any real-analytic P : T" — R" satisfying
e=|Pls<cnrs™™, c=04C)'<1, C :=Cn2%16"">1

assume we have two solutions (Vi, v1), (V2, v2) of

Vi—Vio(ld+a) = Po(ld— Vi) —v;, \\/,-\5/2§C*Egs/4, i=12.

ST

Let V=Vi— Vo, 0 =01 — 0o, P=Po(Id— Vi) — Po(Id — V), then:

V-Vo(ld+a)=P—-0, 0v=[P]
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Local uniqueness of the KAM normal norm
For any real-analytic P : T" — R" satisfying
e=|Pls<cnrs™™, c=04C)'<1, C :=Cn2%16"">1

assume we have two solutions (Vi, v1), (V2, v2) of

Vi—Vio(ld+a) = Po(ld— Vi) —v;, \\/,-\5/2§C*Egs/4, i=12.

ST
Let V=Vi— Vo, 0 =01 — 0o, P=Po(Id— Vi) — Po(Id — V), then:
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For any real-analytic P : T" — R" satisfying
e=|Pls<cnrs™™, c=04C)'<1, C :=Cn2%16"">1

assume we have two solutions (Vi, v1), (V2, v2) of

Vi—Vio(ld+a) = Po(ld— Vi) —v;, \\/,-\5/2§C*Egs/4, i=12.

ST
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Local uniqueness of the KAM normal norm
For any real-analytic P : T" — R" satisfying
e=|Pls<cnrs™™, c=04C)'<1, C :=Cn2%16"">1

assume we have two solutions (Vi, v1), (V2, v2) of

Vi—Vio(ld+a) = Po(ld— Vi) —v;, \\/,-\5/2§C*Egs/4, i=12.

ST

Let V=Vi— Vo, 0 =01 — 0o, P=Po(Id— Vi) — Po(Id — V), then:
V-Vo(ld+a)=P—-0, 0=][P)

Using Taylor formula

|Plsja < |DPls/a|Vsja <25 |Vio, [P—[P]ls/a < |Plsja <25 '¢[V]o

and using the cohomological equation ([V] = [V4] — [V2] = 0)

8C
’}/ST'HE

Vo < &

= ’yST‘HE‘V'O < |V‘o/4.

. A4C A N
[Vl < 7?“3_ [Plls/a <

Hence V = 0 = V1:V2:>.£’:0:>\7:0:>v1:vZ.
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Let A, the space of real-analytic vector fields, A2 the subspace with
zero-average, and given o € K, consider the bounded linear operator

Lo:As > AL Lo(V)=V -Vo(ld+a).
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Let A, the space of real-analytic vector fields, A2 the subspace with
zero-average, and given o € K, consider the bounded linear operator

Lo:As— AL Lo(V)=V —Vo(d+a).
Now given P € A, consider the bounded non-linear operator

Np(V)=Po(ld—V)—v, v=v(V,P):=[Po(ld- V)]
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Now given P € A, consider the bounded non-linear operator
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Then the conjugacy equation can be written as

Lo(V)=Np(V) <=V =Fop(V), Fup: =L, 0Np.
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Let A, the space of real-analytic vector fields, A2 the subspace with
zero-average, and given o € K, consider the bounded linear operator

Lo:As— AL Lo(V)=V —Vo(d+a).
Now given P € A, consider the bounded non-linear operator
Np(V)=Po(ld—V)—v, v=v(V,P):=[Po(ld- V)]
Then the conjugacy equation can be written as
Lo(V)=Np(V) <=V =Fop(V), Fup: =L, 0Np.

Let ¢ .= |P|s and B. :={V € A2/2 | |V]s)2 < e}
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Let A, the space of real-analytic vector fields, A2 the subspace with
zero-average, and given o € K, consider the bounded linear operator

Lo:As— AL Lo(V)=V —Vo(d+a).
Now given P € A, consider the bounded non-linear operator
Np(V)=Po(ld—V)—v, v=v(V,P):=[Po(ld- V)]
Then the conjugacy equation can be written as
Lo(V)=Np(V) <=V =Fop(V), Fup: =L, 0Np.

Let & := |P|s and B. :={V € A2, | V|52 <&}. Then Npis a
contraction of B for ¢ < s/4.
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Let A, the space of real-analytic vector fields, A2 the subspace with
zero-average, and given o € K, consider the bounded linear operator

Lo:As— AL Lo(V)=V —Vo(d+a).
Now given P € A, consider the bounded non-linear operator
Np(V)=Po(ld—V)—v, v=v(V,P):=[Po(ld- V)]
Then the conjugacy equation can be written as
Lo(V)=Np(V) <=V =Fop(V), Fup: =L, 0Np.

Let & := |P|s and B. :={V € A2, | V|52 <&}. Then Npis a
contraction of B. for € < s/4. If L' were a bounded operator

1L (X)]sj2 < ClX[sjay X =Np(V), C>1

then F, p would be a contraction of Bc. for Ce < s/4.
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Failure of the Picard method (contraction principle)

Abed Bounemoura

Let A, the space of real-analytic vector fields, A2 the subspace with
zero-average, and given o € K, consider the bounded linear operator

Lo:As— AL Lo(V)=V —Vo(d+a).
Now given P € A, consider the bounded non-linear operator
Ne(V)=Po(Id—=V)—v, v=v(V,P):=[Po(Ild- V)]
Then the conjugacy equation can be written as
Lo(V)=Np(V) <=V =Fop(V), Fup: =L, 0Np.

Let & := |P|s and B. :={V € A2, | V|52 <&}. Then Npis a
contraction of B. for € < s/4. If L' were a bounded operator

121 (X)]ss2 < ClX[sp2, X =Np(V), C>1
then F,,p would be a contraction of Bc. for Ce < s/4. Unfortunately

L3 (X)sj2-0 < C(0)Xsp2, 0 <0< /2, lim C(o) = +oo.
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The basic idea is to use Id 4+ U, where U solves the cohomological
equation, to conjugate F = T, + P to Fy = T + P+ with |P+| < |P].
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Fi=@Ud+ 0)oFo(ld+ 0) ' =Ta+i+R. = Ta+[P]+R:
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Newton method: quadratic remainder

Abed Bounemoura

The basic idea is to use Id 4+ U, where U solves the cohomological
equation, to conjugate F = T, + P to Fy = T + P+ with |P+| < |P].

Fi=@Ud+ 0)oFo(ld+ 0) ' =Ta+i+R. = Ta+[P]+R:

R, = <Uo(Id+a)—Uo(Id—i—a)o(Id—i—P))o(Id—l— o).
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Newton method: quadratic remainder

Abed Bounemoura

The basic idea is to use Id 4+ U, where U solves the cohomological
equation, to conjugate F = T, + P to Fy = T + P+ with |P+| < |P].

Fi=(d+0)oFo(d+0)" = Tat+i+R. = Ta+[Pl+Ry
R, = <Uo(Id+a)—Uo(Id—‘,—a)o(Id—i—P))o(Id+ o).

Problem: |Pi| ~ |i| 4 |Rs| ~e+e? ~e.
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Abed Bounemoura

The basic idea is to use Id 4+ U, where U solves the cohomological
equation, to conjugate F = T, + P to Fy = T + P+ with |P+| < |P].

Fi=(d+0)oFo(d+0)" = Tat+i+R. = Ta+[Pl+Ry
R, = <Uo(Id+a)—Uo(Id—‘,—a)o(Id—i—P))o(Id+ o).

Problem: |P.| ~ || 4 |Rs| ~ & + € ~ &. Temporary solution: forget
about @, assume Py = R, (this will be achieved using v = i + O(¢?)).
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Newton method: quadratic remainder

Abed Bounemoura

The basic idea is to use Id 4+ U, where U solves the cohomological
equation, to conjugate F = T, + P to Fy = T + P+ with |P+| < |P].

Fi=(d+0)oFo(d+0)" = Tat+i+R. = Ta+[Pl+Ry
R, = <Uo(Id+a)—Uo(Id—‘,—a)o(Id—i—P))o(Id+ o).

Problem: |P.| ~ || 4 |Rs| ~ & + € ~ &. Temporary solution: forget
about @, assume Py = R, (this will be achieved using v = i + O(¢?)).
Let 0 < o < s, one can estimate

552 = 2
7= C(o)e

’YUT+

|R+|s—2a S |DU|57<7|P‘5 <




Newton method: quadratic remainder

The basic idea is to use Id 4+ U, where U solves the cohomological

equation, to conjugate F = T, + P to F. = Ty + Py with [Py < |P).

Fi=(d+0)oFo(d+0)" = Tat+i+R. = Ta+[Pl+Ry
R, = <Uo(Id+a)—Uo(Id—‘,—a)o(Id—i—P))o(Id+ o).

Problem: |P.| ~ || 4 |Rs| ~ & + € ~ &. Temporary solution: forget
about @, assume Py = R, (this will be achieved using v = i + O(¢?)).
Let 0 < o < s, one can estimate

~ 552 = 2
[Ri|s—20 < |DUls—s|Pls < W = C(o)e
(assuming C(c) < 1/0) and assuming ¢ is small enough so that

Clo)e<1/2 = |P|s<|0|s—s <0/2, |DU|s—0 <1/2.
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For o to be chosen, we will require C(c)e < & for some x < 1/2. Set
Pir=P,, s =s5— 20, then F = T, 4+ P is conjugated to F1 = To, + P1
with |Pi|s, < C(0)e? < ke.




Newton method: iteration

For o to be chosen, we will require C(c)e < & for some x < 1/2. Set
Pir=P,, s =s5— 20, then F = T, 4+ P is conjugated to F1 = To, + P1
with |P1|s, < C(0)e? < ke. To proceed by induction, choose

o~ - - e
agj =2 o, S =S, Sjt1 .—Sj—20j, Ej = Ke

KAM normal form Il

Abed Bounemoura




Newton method: iteration

For o to be chosen, we will require C(c)e < & for some x < 1/2. Set
Pir=P,, s =s5— 20, then F = T, 4+ P is conjugated to F1 = To, + P1
with |P1|s, < C(0)e? < ke. To proceed by induction, choose

gj = 271‘0', So i=S, Sj41 = Sj—20j, Ej = KJjE
then F = T, 4 P is conjugated to F; = T, + P; with |Pj|s, < g; if,

C(O’j)é‘j = (5/2‘”—1)]'6(00)60 < 1/2 — 6(00)50 <K< 2—(7‘+1).
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Newton method: iteration

For o to be chosen, we will require C(c)e < & for some x < 1/2. Set
Pir=P,, s =s5— 20, then F = T, 4+ P is conjugated to F1 = To, + P1
with |P1|s, < C(0)e? < ke. To proceed by induction, choose

oj:=270, si=s, syu1i=s-205, & i=re
then F = T, 4 P is conjugated to F; = T, + P; with |Pj|s, < g; if,
C(O’j)é‘j = (5/2‘”—1)]'6(00)60 < 1/2 — 6(00)50 S K S 2—(7‘+1).

Now choose o = 09 = 5/8 so that s; — s — 40 > s/2 (and C(0) < 1/o
since s < 1) and choose & := 2~ ("*+2)
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Newton method: iteration

For o to be chosen, we will require C(c)e < & for some x < 1/2. Set
Pir=P,, s =s5— 20, then F = T, 4+ P is conjugated to F1 = To, + P1
with |P1|s, < C(0)e? < ke. To proceed by induction, choose

oj:=270, si=s, syu1i=s-205, & i=re
then F = T, 4 P is conjugated to F; = T, + P; with |Pj|s, < g; if,
C(O’j)é‘j = (5/2‘”—1)]'6(00)60 < 1/2 — 6(00)50 S K S 2—(7‘+1).

Now choose o = 09 = 5/8 so that s; — s — 40 > s/2 (and C(0) < 1/o
since s < 1) and choose « := 2-(7+2) 55 that

C(o0)eo = C(s/8)e <27 — C(0;)ej = 277 C(00)e0

and the infinite composition Id 4+ U = --- o (Id + U;) o (Id + Up)
converges

|DU|5/2 < 22 |D0j|5/2 < 22 C(O‘j)Ej < 46(0‘0)80.
JEN JEN
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Newton method: iteration

For o to be chosen, we will require C(c)e < & for some x < 1/2. Set
Pir=P,, s =s5— 20, then F = T, 4+ P is conjugated to F1 = To, + P1
with |P1|s, < C(0)e? < ke. To proceed by induction, choose

oj:=270, si=s, syu1i=s-205, & i=re
then F = T, 4 P is conjugated to F; = T, + P; with |Pj|s, < g; if,
C(O’j)é‘j = (5/2‘”—1)]'6(00)60 < 1/2 — 6(00)50 S K S 2—(7‘+1).

Now choose o = 09 = 5/8 so that s; — s — 40 > s/2 (and C(0) < 1/o
since s < 1) and choose « := 2-(7+2) 55 that

C(o0)eo = C(s/8)e <27 — C(0;)ej = 277 C(00)e0

and the infinite composition Id 4+ U = --- o (Id + U;) o (Id + Up)
converges

|DU|5/2 < 22 |D0j|5/2 < 22 C(O‘j)Ej < 46(0‘0)80.
JEN JEN

Actually the sequence |Pj|s; — 0 “essentially" quadratically.
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