

KAM normal form III

Abed Bounemoura

CNRS-UPPA

September 19, 2025

Analytic functions

KAM normal form III

Abed Bounemoura

Analytic functions

A smooth vector field $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ equals its Fourier series:

$$P(\theta) = \sum_{k \in \mathbb{Z}^n} P_k e^{2\pi i k \cdot \theta}, \quad P_k := \int_{\mathbb{T}^n} P(\theta) e^{-2\pi i k \cdot \theta} dx = \overline{P_{-k}} \in \mathbb{C}^n.$$

Analytic functions

A smooth vector field $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ equals its Fourier series:

$$P(\theta) = \sum_{k \in \mathbb{Z}^n} P_k e^{2\pi i k \cdot \theta}, \quad P_k := \int_{\mathbb{T}^n} P(\theta) e^{-2\pi i k \cdot \theta} dx = \overline{P_{-k}} \in \mathbb{C}^n.$$

We say that P is **analytic** if there exists $s > 0$ such that

$$|P|_s := \sum_{k \in \mathbb{Z}^n} |P_k| e^{2\pi s |k|} < +\infty.$$

Analytic functions

A smooth vector field $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ equals its Fourier series:

$$P(\theta) = \sum_{k \in \mathbb{Z}^n} P_k e^{2\pi i k \cdot \theta}, \quad P_k := \int_{\mathbb{T}^n} P(\theta) e^{-2\pi i k \cdot \theta} dx = \overline{P_{-k}} \in \mathbb{C}^n.$$

We say that P is **analytic** if there exists $s > 0$ such that

$$|P|_s := \sum_{k \in \mathbb{Z}^n} |P_k| e^{2\pi s |k|} < +\infty.$$

Convention: for $k = (k_1, \dots, k_n) \in \mathbb{Z}^n$, $x = (x_1, \dots, x_n) \in \mathbb{C}^n$

$$|k| = |k_1| + \dots + |k_n|, \quad |x| = \sup\{|x_1|, \dots, |x_n|\}.$$

Analytic functions

A smooth vector field $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ equals its Fourier series:

$$P(\theta) = \sum_{k \in \mathbb{Z}^n} P_k e^{2\pi i k \cdot \theta}, \quad P_k := \int_{\mathbb{T}^n} P(\theta) e^{-2\pi i k \cdot \theta} dx = \overline{P_{-k}} \in \mathbb{C}^n.$$

We say that P is **analytic** if there exists $s > 0$ such that

$$|P|_s := \sum_{k \in \mathbb{Z}^n} |P_k| e^{2\pi s |k|} < +\infty.$$

Convention: for $k = (k_1, \dots, k_n) \in \mathbb{Z}^n$, $x = (x_1, \dots, x_n) \in \mathbb{C}^n$

$$|k| = |k_1| + \dots + |k_n|, \quad |x| = \sup\{|x_1|, \dots, |x_n|\}.$$

If we define complex s -neighborhood of \mathbb{R}^n and \mathbb{T}^n by

$$\mathbb{R}_s^n := \{x \in \mathbb{C}^n \mid d(x, \mathbb{R}^n) = |\operatorname{Im} x| < s\}, \quad \mathbb{T}_s^n := \mathbb{R}_s^n / \mathbb{Z}^n$$

Analytic functions

A smooth vector field $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ equals its Fourier series:

$$P(\theta) = \sum_{k \in \mathbb{Z}^n} P_k e^{2\pi i k \cdot \theta}, \quad P_k := \int_{\mathbb{T}^n} P(\theta) e^{-2\pi i k \cdot \theta} dx = \overline{P_{-k}} \in \mathbb{C}^n.$$

We say that P is **analytic** if there exists $s > 0$ such that

$$|P|_s := \sum_{k \in \mathbb{Z}^n} |P_k| e^{2\pi s |k|} < +\infty.$$

Convention: for $k = (k_1, \dots, k_n) \in \mathbb{Z}^n$, $x = (x_1, \dots, x_n) \in \mathbb{C}^n$

$$|k| = |k_1| + \dots + |k_n|, \quad |x| = \sup\{|x_1|, \dots, |x_n|\}.$$

If we define complex s -neighborhood of \mathbb{R}^n and \mathbb{T}^n by

$$\mathbb{R}_s^n := \{x \in \mathbb{C}^n \mid d(x, \mathbb{R}^n) = |\operatorname{Im} x| < s\}, \quad \mathbb{T}_s^n := \mathbb{R}_s^n / \mathbb{Z}^n$$

then P extends to a holomorphic vector field $P : \mathbb{T}_s^n \rightarrow \mathbb{C}^n$ and

$$\|P\|_s := \sup_{\theta \in \mathbb{T}_s^n} |P(\theta)| \leq |P|_s.$$

KAM normal form

Theorem (Arnold)

Fix $\gamma > 0$, $\tau > n$ and $0 < s \leq 1$, and define

$$\bar{C} := (\tau + 1)! 4^{-1} (2\pi)^{-\tau}, \quad C_* := \bar{C} n 2^6 16^{\tau+1} > 1, \quad c_* = (4C_*)^{-1} < 1.$$

KAM normal form

Theorem (Arnold)

Fix $\gamma > 0$, $\tau > n$ and $0 < s \leq 1$, and define

$$\bar{C} := (\tau + 1)! 4^{-1} (2\pi)^{-\tau}, \quad C_* := \bar{C} n 2^6 16^{\tau+1} > 1, \quad c_* = (4C_*)^{-1} < 1.$$

Then for any $\alpha \in K_\gamma^\tau$ and any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ satisfying

$$\varepsilon := |P|_s \leq c_* \gamma s^{\tau+1}$$

there exist a unique couple (U, v) , where $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is real-analytic with zero average and $v \in \mathbb{R}^n$, such that for $F = T_\alpha + P$, $\Phi = \text{Id} + U$ and $\Psi = \Phi^{-1} = \text{Id} - V$, we have

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

KAM normal form

Theorem (Arnold)

Fix $\gamma > 0$, $\tau > n$ and $0 < s \leq 1$, and define

$$\bar{C} := (\tau + 1)! 4^{-1} (2\pi)^{-\tau}, \quad C_* := \bar{C} n 2^6 16^{\tau+1} > 1, \quad c_* = (4C_*)^{-1} < 1.$$

Then for any $\alpha \in K_\gamma^\tau$ and any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ satisfying

$$\varepsilon := |P|_s \leq c_* \gamma s^{\tau+1}$$

there exist a unique couple (U, v) , where $U : \mathbb{T}^n \rightarrow \mathbb{R}^n$ is real-analytic with zero average and $v \in \mathbb{R}^n$, such that for $F = T_\alpha + P$, $\Phi = \text{Id} + U$ and $\Psi = \Phi^{-1} = \text{Id} - V$, we have

$$\Phi \circ (F - v) \circ \Phi^{-1} = T_\alpha.$$

with the estimates

$$|V|_{s/2} \leq |U|_{s/2} \leq \frac{C_* \varepsilon}{\gamma s^\tau} \leq s/4, \quad |DV|_{s/2} \leq 2|DU|_{s/2} \leq \frac{2C_* \varepsilon}{\gamma s^{\tau+1}} \leq 1/2,$$

$$|v| \leq 2\varepsilon, \quad \text{Lip}_\alpha(v) \leq \frac{2C_* \varepsilon}{\gamma s^{\tau+1}} \leq 1/2.$$

Properties of analytic functions (Fourier norm)

KAM normal form III

Abed Bounemoura

Properties of analytic functions (Fourier norm)

(1) Product. $P, Q : \mathbb{T}_s^n \rightarrow \mathbb{C}$, $|PQ|_s \leq |P|_s |Q|_s$

Properties of analytic functions (Fourier norm)

(1) Product. $P, Q : \mathbb{T}_s^n \rightarrow \mathbb{C}$, $|PQ|_s \leq |P|_s |Q|_s$

(2) Derivative. $P : \mathbb{T}_s^n \rightarrow \mathbb{C}^n$ and $0 < \sigma \leq s$

$$\sum_{I \in \mathbb{N}^n} \frac{\sigma^{|I|}}{I!} |\partial^I P|_{s-\sigma} \leq |P|_s, \quad |DP|_{s-\sigma} := \sum_{|I|=1} |\partial^I P|_{s-\sigma} \leq \sigma^{-1} |P|_s.$$

Properties of analytic functions (Fourier norm)

(1) Product. $P, Q : \mathbb{T}_s^n \rightarrow \mathbb{C}$, $|PQ|_s \leq |P|_s |Q|_s$

(2) Derivative. $P : \mathbb{T}_s^n \rightarrow \mathbb{C}^n$ and $0 < \sigma \leq s$

$$\sum_{I \in \mathbb{N}^n} \frac{\sigma^{|I|}}{I!} |\partial^I P|_{s-\sigma} \leq |P|_s, \quad |DP|_{s-\sigma} := \sum_{|I|=1} |\partial^I P|_{s-\sigma} \leq \sigma^{-1} |P|_s.$$

(3) Composition. $0 < \sigma \leq s$, $U : \mathbb{T}_{s-\sigma}^n \rightarrow \mathbb{C}^n$, $|U|_{s-\sigma} \leq \sigma$

$$|P \circ (\text{Id} + U)|_{s-\sigma} \leq |P|_s, \quad |P \circ (\text{Id} + U) - P|_{s-\sigma} \leq \sigma^{-1} |U|_{s-\sigma} |P|_s.$$

Properties of analytic functions (Fourier norm)

(1) Product. $P, Q : \mathbb{T}_s^n \rightarrow \mathbb{C}$, $|PQ|_s \leq |P|_s |Q|_s$

(2) Derivative. $P : \mathbb{T}_s^n \rightarrow \mathbb{C}^n$ and $0 < \sigma \leq s$

$$\sum_{I \in \mathbb{N}^n} \frac{\sigma^{|I|}}{I!} |\partial^I P|_{s-\sigma} \leq |P|_s, \quad |DP|_{s-\sigma} := \sum_{|I|=1} |\partial^I P|_{s-\sigma} \leq \sigma^{-1} |P|_s.$$

(3) Composition. $0 < \sigma \leq s$, $U : \mathbb{T}_{s-\sigma}^n \rightarrow \mathbb{C}^n$, $|U|_{s-\sigma} \leq \sigma$

$$|P \circ (\text{Id} + U)|_{s-\sigma} \leq |P|_s, \quad |P \circ (\text{Id} + U) - P|_{s-\sigma} \leq \sigma^{-1} |U|_{s-\sigma} |P|_s.$$

(4) Taylor. $0 < \sigma \leq s$, $U_1, U_2 : \mathbb{T}_{s-\sigma}^n \rightarrow \mathbb{C}^n$, $|U_i|_{s-\sigma} \leq \sigma$

$$|P \circ (\text{Id} + U_1) - P \circ (\text{Id} + U_2)|_{s-\sigma} \leq |DP|_s |U_1 - U_2|_{s-\sigma}.$$

Properties of analytic functions (Fourier norm)

(1) Product. $P, Q : \mathbb{T}_s^n \rightarrow \mathbb{C}$, $|PQ|_s \leq |P|_s |Q|_s$

(2) Derivative. $P : \mathbb{T}_s^n \rightarrow \mathbb{C}^n$ and $0 < \sigma \leq s$

$$\sum_{I \in \mathbb{N}^n} \frac{\sigma^{|I|}}{|I|!} |\partial^I P|_{s-\sigma} \leq |P|_s, \quad |DP|_{s-\sigma} := \sum_{|I|=1} |\partial^I P|_{s-\sigma} \leq \sigma^{-1} |P|_s.$$

(3) Composition. $0 < \sigma \leq s$, $U : \mathbb{T}_{s-\sigma}^n \rightarrow \mathbb{C}^n$, $|U|_{s-\sigma} \leq \sigma$

$$|P \circ (\text{Id} + U)|_{s-\sigma} \leq |P|_s, \quad |P \circ (\text{Id} + U) - P|_{s-\sigma} \leq \sigma^{-1} |U|_{s-\sigma} |P|_s.$$

(4) Taylor. $0 < \sigma \leq s$, $U_1, U_2 : \mathbb{T}_{s-\sigma}^n \rightarrow \mathbb{C}^n$, $|U_i|_{s-\sigma} \leq \sigma$

$$|P \circ (\text{Id} + U_1) - P \circ (\text{Id} + U_2)|_{s-\sigma} \leq |DP|_s |U_1 - U_2|_{s-\sigma}.$$

(5) Inverse. $0 < 2\sigma \leq s$, $|U|_{s-\sigma} \leq \sigma$, $|DU|_{s-\sigma} < 1$, then

$\Phi = \text{Id} + U : \mathbb{T}_{s-\sigma}^n \rightarrow \mathbb{C}^n$ is an analytic embedding such that

$\mathbb{T}_{s-2\sigma}^n \subseteq \Phi(\mathbb{T}_{s-\sigma}^n) \subseteq \mathbb{T}_s^n$ and $\Phi^{-1} = \text{Id} - V$ with

$$|V|_{s-2\sigma} \leq |U|_{s-\sigma}, \quad |DV|_{s-2\sigma} \leq |DU|_{s-\sigma} (1 - |DU|_{s-\sigma})^{-1}.$$

Properties of analytic functions: proof ($n = 1$)

KAM normal form III

Abed Bounemoura

Points (1) and (2):

Properties of analytic functions: proof ($n = 1$)

Points (1) and (2):

$$|PQ|_s = \sum_{k \in \mathbb{Z}} \left| \sum_{m \leq k} P_m Q_{k-m} \right| e^{2\pi s|k|} \leq \sum_{k,m} |P_m| |Q_{k-m}| |e^{2\pi s|m|}| e^{2\pi s|k-m|}$$

Properties of analytic functions: proof ($n = 1$)

Points (1) and (2):

$$|PQ|_s = \sum_{k \in \mathbb{Z}} \left| \sum_{m \leq k} P_m Q_{k-m} \right| e^{2\pi s|k|} \leq \sum_{k,m} |P_m| |Q_{k-m}| |e^{2\pi s|m|}| e^{2\pi s|k-m|}$$

$$\sum_{l \in \mathbb{N}} (l!)^{-1} \sigma^l |\partial^l P|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} \sum_{k \in \mathbb{Z}} (l!)^{-1} (\sigma 2\pi |k|)^l |P_k| e^{2\pi(s-\sigma)|k|} = |P|_s.$$

Properties of analytic functions: proof ($n = 1$)

Points (1) and (2):

$$|PQ|_s = \sum_{k \in \mathbb{Z}} \left| \sum_{m \leq k} P_m Q_{k-m} \right| e^{2\pi s|k|} \leq \sum_{k,m} |P_m| |Q_{k-m}| e^{2\pi s|m|} e^{2\pi s|k-m|}$$

$$\sum_{l \in \mathbb{N}} (l!)^{-1} \sigma^l |\partial^l P|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} \sum_{k \in \mathbb{Z}} (l!)^{-1} (\sigma 2\pi |k|)^l |P_k| e^{2\pi(s-\sigma)|k|} = |P|_s.$$

Point (3) follows from (1), (2) and analyticity: we can write

$$P(\theta + X(\theta)) = \sum_{l \in \mathbb{N}} (l!)^{-1} (\partial^l P(\theta)) X^l(\theta), \quad \theta \in \mathbb{T}_{s-\sigma}^n$$

Properties of analytic functions: proof ($n = 1$)

Points (1) and (2):

$$|PQ|_s = \sum_{k \in \mathbb{Z}} \left| \sum_{m \leq k} P_m Q_{k-m} \right| e^{2\pi s|k|} \leq \sum_{k,m} |P_m| |Q_{k-m}| e^{2\pi s|m|} e^{2\pi s|k-m|}$$

$$\sum_{l \in \mathbb{N}} (l!)^{-1} \sigma^l |\partial^l P|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} \sum_{k \in \mathbb{Z}} (l!)^{-1} (\sigma 2\pi |k|)^l |P_k| e^{2\pi(s-\sigma)|k|} = |P|_s.$$

Point (3) follows from (1), (2) and analyticity: we can write

$$P(\theta + X(\theta)) = \sum_{l \in \mathbb{N}} (l!)^{-1} (\partial^l P(\theta)) X^l(\theta), \quad \theta \in \mathbb{T}_{s-\sigma}^n$$

$$|P \circ (\text{Id} + X)|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} (l!)^{-1} |\partial^l P|_{s-\sigma} |X|_{s-\sigma}^l \leq |P|_s$$

Properties of analytic functions: proof ($n = 1$)

Points (1) and (2):

$$|PQ|_s = \sum_{k \in \mathbb{Z}} \left| \sum_{m \leq k} P_m Q_{k-m} \right| e^{2\pi s|k|} \leq \sum_{k,m} |P_m| |Q_{k-m}| e^{2\pi s|m|} e^{2\pi s|k-m|}$$

$$\sum_{l \in \mathbb{N}} (l!)^{-1} \sigma^l |\partial^l P|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} \sum_{k \in \mathbb{Z}} (l!)^{-1} (\sigma 2\pi |k|)^l |P_k| e^{2\pi(s-\sigma)|k|} = |P|_s.$$

Point (3) follows from (1), (2) and analyticity: we can write

$$P(\theta + X(\theta)) = \sum_{l \in \mathbb{N}} (l!)^{-1} (\partial^l P(\theta)) X^l(\theta), \quad \theta \in \mathbb{T}_{s-\sigma}^n$$

$$|P \circ (\text{Id} + X)|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} (l!)^{-1} |\partial^l P|_{s-\sigma} |X|_{s-\sigma}^l \leq |P|_s$$

$$|P \circ (\text{Id} + X) - P|_{s-\sigma} \leq \sum_{l \geq 1} (l!)^{-1} |\partial^l P|_{s-\sigma} |X|_{s-\sigma}^l \leq \sigma^{-1} |X|_{s-\sigma} |P|_s.$$

Properties of analytic functions: proof ($n = 1$)

Points (1) and (2):

$$|PQ|_s = \sum_{k \in \mathbb{Z}} \left| \sum_{m \leq k} P_m Q_{k-m} \right| e^{2\pi s|k|} \leq \sum_{k,m} |P_m| |Q_{k-m}| e^{2\pi s|m|} e^{2\pi s|k-m|}$$

$$\sum_{l \in \mathbb{N}} (l!)^{-1} \sigma^l |\partial^l P|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} \sum_{k \in \mathbb{Z}} (l!)^{-1} (\sigma 2\pi |k|)^l |P_k| e^{2\pi(s-\sigma)|k|} = |P|_s.$$

Point (3) follows from (1), (2) and analyticity: we can write

$$P(\theta + X(\theta)) = \sum_{l \in \mathbb{N}} (l!)^{-1} (\partial^l P(\theta)) X^l(\theta), \quad \theta \in \mathbb{T}_{s-\sigma}^n$$

$$|P \circ (\text{Id} + X)|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} (l!)^{-1} |\partial^l P|_{s-\sigma} |X|_{s-\sigma}^l \leq |P|_s$$

$$|P \circ (\text{Id} + X) - P|_{s-\sigma} \leq \sum_{l \geq 1} (l!)^{-1} |\partial^l P|_{s-\sigma} |X|_{s-\sigma}^l \leq \sigma^{-1} |X|_{s-\sigma} |P|_s.$$

Point (4) follows from (1), (3) and Taylor formula.

Properties of analytic functions: proof ($n = 1$)

Points (1) and (2):

$$|PQ|_s = \sum_{k \in \mathbb{Z}} \left| \sum_{m \leq k} P_m Q_{k-m} \right| e^{2\pi s|k|} \leq \sum_{k,m} |P_m| |Q_{k-m}| e^{2\pi s|m|} e^{2\pi s|k-m|}$$

$$\sum_{l \in \mathbb{N}} (l!)^{-1} \sigma^l |\partial^l P|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} \sum_{k \in \mathbb{Z}} (l!)^{-1} (\sigma 2\pi |k|)^l |P_k| e^{2\pi(s-\sigma)|k|} = |P|_s.$$

Point (3) follows from (1), (2) and analyticity: we can write

$$P(\theta + X(\theta)) = \sum_{l \in \mathbb{N}} (l!)^{-1} (\partial^l P(\theta)) X^l(\theta), \quad \theta \in \mathbb{T}_{s-\sigma}^n$$

$$|P \circ (\text{Id} + X)|_{s-\sigma} \leq \sum_{l \in \mathbb{N}} (l!)^{-1} |\partial^l P|_{s-\sigma} |X|_{s-\sigma}^l \leq |P|_s$$

$$|P \circ (\text{Id} + X) - P|_{s-\sigma} \leq \sum_{l \geq 1} (l!)^{-1} |\partial^l P|_{s-\sigma} |X|_{s-\sigma}^l \leq \sigma^{-1} |X|_{s-\sigma} |P|_s.$$

Point (4) follows from (1), (3) and Taylor formula. Point (5) follows from (3), (4) and the contraction principle.

Conjugacy and cohomological equation

KAM normal form III

Abed Bounemoura

Conjugacy and cohomological equation

Given $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$, we want to find (U, v) or (V, v) such that

$$(\text{Id} + U) \circ (F - v) = T_\alpha \circ (\text{Id} + U) \quad \Leftrightarrow \quad U - U \circ (F - v) = P - v.$$

$$(\text{Id} - V) \circ T_\alpha = (F - v) \circ (\text{Id} - V) \quad \Leftrightarrow \quad V - V \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V) - v.$$

Conjugacy and cohomological equation

Given $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$, we want to find (U, v) or (V, v) such that

$$(\text{Id} + U) \circ (F - v) = T_\alpha \circ (\text{Id} + U) \quad \Leftrightarrow \quad U - U \circ (F - v) = P - v.$$

$$(\text{Id} - V) \circ T_\alpha = (F - v) \circ (\text{Id} - V) \quad \Leftrightarrow \quad V - V \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V) - v.$$

Since $P \sim \varepsilon$, one expects $U \sim \varepsilon$, $V \sim \varepsilon$, $v \sim \varepsilon$ hence

$$U \circ (F - v) - U \circ (\text{Id} + \alpha) = O(\varepsilon^2), \quad P \circ (\text{Id} - V) - P = O(\varepsilon^2).$$

Conjugacy and cohomological equation

Given $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$, we want to find (U, v) or (V, v) such that

$$(\text{Id} + U) \circ (F - v) = T_\alpha \circ (\text{Id} + U) \Leftrightarrow U - U \circ (F - v) = P - v.$$

$$(\text{Id} - V) \circ T_\alpha = (F - v) \circ (\text{Id} - V) \Leftrightarrow V - V \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V) - v.$$

Since $P \sim \varepsilon$, one expects $U \sim \varepsilon$, $V \sim \varepsilon$, $v \sim \varepsilon$ hence

$$U \circ (F - v) - U \circ (\text{Id} + \alpha) = O(\varepsilon^2), \quad P \circ (\text{Id} - V) - P = O(\varepsilon^2).$$

The cohomological equation, or linearized conjugacy equation, amounts to find (\tilde{U}, \tilde{u}) or (\tilde{V}, \tilde{v}) such that

$$\tilde{U} - \tilde{U} \circ (\text{Id} + \alpha) = P - \tilde{u}, \quad \tilde{V} - \tilde{V} \circ (\text{Id} + \alpha) = P - \tilde{v}.$$

Conjugacy and cohomological equation

Given $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$, we want to find (U, v) or (V, v) such that

$$(\text{Id} + U) \circ (F - v) = T_\alpha \circ (\text{Id} + U) \Leftrightarrow U - U \circ (F - v) = P - v.$$

$$(\text{Id} - V) \circ T_\alpha = (F - v) \circ (\text{Id} - V) \Leftrightarrow V - V \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V) - v.$$

Since $P \sim \varepsilon$, one expects $U \sim \varepsilon$, $V \sim \varepsilon$, $v \sim \varepsilon$ hence

$$U \circ (F - v) - U \circ (\text{Id} + \alpha) = O(\varepsilon^2), \quad P \circ (\text{Id} - V) - P = O(\varepsilon^2).$$

The cohomological equation, or linearized conjugacy equation, amounts to find (\tilde{U}, \tilde{u}) or (\tilde{V}, \tilde{v}) such that

$$\tilde{U} - \tilde{U} \circ (\text{Id} + \alpha) = P - \tilde{u}, \quad \tilde{V} - \tilde{V} \circ (\text{Id} + \alpha) = P - \tilde{v}.$$

This can be solved in the space of formal Fourier series: $\tilde{u} = [P] = P_0$

$$\tilde{U}_k - e^{2\pi i k \cdot \alpha} \tilde{U}_k = P_k, \quad k \in \mathbb{Z}^n \setminus \{0\}$$

$$\Leftrightarrow \tilde{U}_k = \frac{P_k}{1 - e^{2\pi i k \cdot \alpha}}, \quad k \in \mathbb{Z}^n \setminus \{0\}.$$

Conjugacy and cohomological equation

Given $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$, we want to find (U, v) or (V, v) such that

$$(\text{Id} + U) \circ (F - v) = T_\alpha \circ (\text{Id} + U) \Leftrightarrow U - U \circ (F - v) = P - v.$$

$$(\text{Id} - V) \circ T_\alpha = (F - v) \circ (\text{Id} - V) \Leftrightarrow V - V \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V) - v.$$

Since $P \sim \varepsilon$, one expects $U \sim \varepsilon$, $V \sim \varepsilon$, $v \sim \varepsilon$ hence

$$U \circ (F - v) - U \circ (\text{Id} + \alpha) = O(\varepsilon^2), \quad P \circ (\text{Id} - V) - P = O(\varepsilon^2).$$

The cohomological equation, or linearized conjugacy equation, amounts to find (\tilde{U}, \tilde{u}) or (\tilde{V}, \tilde{v}) such that

$$\tilde{U} - \tilde{U} \circ (\text{Id} + \alpha) = P - \tilde{u}, \quad \tilde{V} - \tilde{V} \circ (\text{Id} + \alpha) = P - \tilde{v}.$$

This can be solved in the space of formal Fourier series: $\tilde{u} = [P] = P_0$

$$\tilde{U}_k - e^{2\pi i k \cdot \alpha} \tilde{U}_k = P_k, \quad k \in \mathbb{Z}^n \setminus \{0\}$$

$$\Leftrightarrow \tilde{U}_k = \frac{P_k}{1 - e^{2\pi i k \cdot \alpha}}, \quad k \in \mathbb{Z}^n \setminus \{0\}.$$

Solution is unique if $\tilde{U}_0 = 0$.

Conjugacy and cohomological equation

Given $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$, we want to find (U, v) or (V, v) such that

$$(\text{Id} + U) \circ (F - v) = T_\alpha \circ (\text{Id} + U) \Leftrightarrow U - U \circ (F - v) = P - v.$$

$$(\text{Id} - V) \circ T_\alpha = (F - v) \circ (\text{Id} - V) \Leftrightarrow V - V \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V) - v.$$

Since $P \sim \varepsilon$, one expects $U \sim \varepsilon$, $V \sim \varepsilon$, $v \sim \varepsilon$ hence

$$U \circ (F - v) - U \circ (\text{Id} + \alpha) = O(\varepsilon^2), \quad P \circ (\text{Id} - V) - P = O(\varepsilon^2).$$

The cohomological equation, or linearized conjugacy equation, amounts to find (\tilde{U}, \tilde{u}) or (\tilde{V}, \tilde{v}) such that

$$\tilde{U} - \tilde{U} \circ (\text{Id} + \alpha) = P - \tilde{u}, \quad \tilde{V} - \tilde{V} \circ (\text{Id} + \alpha) = P - \tilde{v}.$$

This can be solved in the space of formal Fourier series: $\tilde{u} = [P] = P_0$

$$\tilde{U}_k - e^{2\pi i k \cdot \alpha} \tilde{U}_k = P_k, \quad k \in \mathbb{Z}^n \setminus \{0\}$$

$$\Leftrightarrow \tilde{U}_k = \frac{P_k}{1 - e^{2\pi i k \cdot \alpha}}, \quad k \in \mathbb{Z}^n \setminus \{0\}.$$

Solution is unique if $\tilde{U}_0 = 0$. If P is real ($\overline{P_k} = P_{-k}$) then so is \tilde{U} .

Cohomological equation

KAM normal form III

Abed Bounemoura

Cohomological equation

Proposition

For any P real-analytic, there exists a unique couple (\tilde{U}, \tilde{u})

$$\tilde{U} - \tilde{U} \circ (\text{Id} + \alpha) = P - \tilde{u}$$

and for any $0 < \sigma \leq s$, setting $\bar{C} = (\tau + 1)!4^{-1}(2\pi)^{-\tau}$,

$$|\tilde{u}| \leq |P|_s, \quad |\tilde{U}|_{s-\sigma} \leq \frac{\bar{C}}{\gamma\sigma^\tau} |P|_s, \quad |D\tilde{U}|_{s-\sigma} \leq \frac{\bar{C}}{\gamma\sigma^{\tau+1}} |P|_s.$$

Cohomological equation

Proposition

For any P real-analytic, there exists a unique couple (\tilde{U}, \tilde{u})

$$\tilde{U} - \tilde{U} \circ (\text{Id} + \alpha) = P - \tilde{u}$$

and for any $0 < \sigma \leq s$, setting $\bar{C} = (\tau + 1)!4^{-1}(2\pi)^{-\tau}$,

$$|\tilde{u}| \leq |P|_s, \quad |\tilde{U}|_{s-\sigma} \leq \frac{\bar{C}}{\gamma\sigma^\tau} |P|_s, \quad |D\tilde{U}|_{s-\sigma} \leq \frac{\bar{C}}{\gamma\sigma^{\tau+1}} |P|_s.$$

Proof.

Since $|1 - e^{2\pi ik \cdot \alpha}| = 2|\sin(\pi k \cdot \alpha)| \geq 4|k \cdot \alpha|_{\mathbb{Z}} \geq 4\gamma|k|^{-\tau}$:

Cohomological equation

Proposition

For any P real-analytic, there exists a unique couple (\tilde{U}, \tilde{u})

$$\tilde{U} - \tilde{U} \circ (\text{Id} + \alpha) = P - \tilde{u}$$

and for any $0 < \sigma \leq s$, setting $\bar{C} = (\tau + 1)! 4^{-1} (2\pi)^{-\tau}$,

$$|\tilde{u}| \leq |P|_s, \quad |\tilde{U}|_{s-\sigma} \leq \frac{\bar{C}}{\gamma \sigma^\tau} |P|_s, \quad |D\tilde{U}|_{s-\sigma} \leq \frac{\bar{C}}{\gamma \sigma^{\tau+1}} |P|_s.$$

Proof.

Since $|1 - e^{2\pi i k \cdot \alpha}| = 2|\sin(\pi k \cdot \alpha)| \geq 4|k \cdot \alpha|_{\mathbb{Z}} \geq 4\gamma|k|^{-\tau}$:

$$\begin{aligned} |\tilde{U}|_{s-\sigma} &\leq \frac{1}{4\gamma} \sum_{k \in \mathbb{Z}^n \setminus \{0\}} |k|^\tau e^{-2\pi\sigma|k|} |P_k| e^{2\pi s|k|} \\ &\leq \frac{1}{4\gamma} \left(\sup_{k \in \mathbb{Z}^n \setminus \{0\}} |k|^\tau e^{-2\pi\sigma|k|} \right) |P|_r \leq \frac{\tau!}{4\gamma(2\pi\sigma)^\tau} |P|_s. \end{aligned}$$

Cohomological equation

Proposition

For any P real-analytic, there exists a unique couple (\tilde{U}, \tilde{u})

$$\tilde{U} - \tilde{U} \circ (\text{Id} + \alpha) = P - \tilde{u}$$

and for any $0 < \sigma \leq s$, setting $\bar{C} = (\tau + 1)! 4^{-1} (2\pi)^{-\tau}$,

$$|\tilde{u}| \leq |P|_s, \quad |\tilde{U}|_{s-\sigma} \leq \frac{\bar{C}}{\gamma \sigma^\tau} |P|_s, \quad |D\tilde{U}|_{s-\sigma} \leq \frac{\bar{C}}{\gamma \sigma^{\tau+1}} |P|_s.$$

Proof.

Since $|1 - e^{2\pi i k \cdot \alpha}| = 2|\sin(\pi k \cdot \alpha)| \geq 4|k \cdot \alpha|_{\mathbb{Z}} \geq 4\gamma|k|^{-\tau}$:

$$\begin{aligned} |\tilde{U}|_{s-\sigma} &\leq \frac{1}{4\gamma} \sum_{k \in \mathbb{Z}^n \setminus \{0\}} |k|^\tau e^{-2\pi\sigma|k|} |P_k| e^{2\pi s|k|} \\ &\leq \frac{1}{4\gamma} \left(\sup_{k \in \mathbb{Z}^n \setminus \{0\}} |k|^\tau e^{-2\pi\sigma|k|} \right) |P|_r \leq \frac{\tau!}{4\gamma(2\pi\sigma)^\tau} |P|_s. \end{aligned}$$

$$|D\tilde{U}|_{s-\sigma} \leq \frac{1}{4\gamma} \left(\sup_{k \in \mathbb{Z}^n \setminus \{0\}} 2\pi|k|^{\tau+1} e^{-2\pi\sigma|k|} \right) |P|_r \leq \frac{(\tau + 1)!}{4\gamma(2\pi\sigma)^{\tau+1}} |P|_s.$$

Local uniqueness of the KAM normal form

KAM normal form III

Abed Bounemoura

Local uniqueness of the KAM normal norm

For any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ satisfying

$$\varepsilon := |P|_s \leq c_* \gamma s^{\tau+1}, \quad c_* = (4C_*)^{-1} < 1, \quad C_* := \bar{C} n 2^6 16^{\tau+1} > 1$$

assume we have two solutions $(V_1, v_1), (V_2, v_2)$ of

$$V_i - V_i \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V_i) - v_i, \quad |V_i|_{s/2} \leq \frac{C_* \varepsilon}{\gamma s^\tau} \leq s/4, \quad i = 1, 2.$$

Local uniqueness of the KAM normal norm

For any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ satisfying

$$\varepsilon := |P|_s \leq c_* \gamma s^{\tau+1}, \quad c_* = (4C_*)^{-1} < 1, \quad C_* := \bar{C} n 2^6 16^{\tau+1} > 1$$

assume we have two solutions $(V_1, v_1), (V_2, v_2)$ of

$$V_i - V_i \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V_i) - v_i, \quad |V_i|_{s/2} \leq \frac{C_* \varepsilon}{\gamma s^\tau} \leq s/4, \quad i = 1, 2.$$

Let $\hat{V} = V_1 - V_2$, $\hat{v} = \hat{v}_1 - \hat{v}_2$, $\hat{P} = P \circ (\text{Id} - V_1) - P \circ (\text{Id} - V_2)$, then:

$$\hat{V} - \hat{V} \circ (\text{Id} + \alpha) = \hat{P} - \hat{v}, \quad \hat{v} = [\hat{P}].$$

Local uniqueness of the KAM normal norm

For any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ satisfying

$$\varepsilon := |P|_s \leq c_* \gamma s^{\tau+1}, \quad c_* = (4C_*)^{-1} < 1, \quad C_* := \bar{C} n 2^6 16^{\tau+1} > 1$$

assume we have two solutions $(V_1, v_1), (V_2, v_2)$ of

$$V_i - V_i \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V_i) - v_i, \quad |V_i|_{s/2} \leq \frac{C_* \varepsilon}{\gamma s^\tau} \leq s/4, \quad i = 1, 2.$$

Let $\hat{V} = V_1 - V_2$, $\hat{v} = \hat{v}_1 - \hat{v}_2$, $\hat{P} = P \circ (\text{Id} - V_1) - P \circ (\text{Id} - V_2)$, then:

$$\hat{V} - \hat{V} \circ (\text{Id} + \alpha) = \hat{P} - \hat{v}, \quad \hat{v} = [\hat{P}].$$

Using Taylor formula

$$|\hat{P}|_{s/4} \leq |DP|_{s/2} |\hat{V}|_{s/4} \leq 2s^{-1} \varepsilon |\hat{V}|_0, \quad |\hat{P} - [\hat{P}]|_{s/4} \leq |\hat{P}|_{s/4} \leq 2s^{-1} \varepsilon |\hat{V}|_0$$

Local uniqueness of the KAM normal norm

For any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ satisfying

$$\varepsilon := |P|_s \leq c_* \gamma s^{\tau+1}, \quad c_* = (4C_*)^{-1} < 1, \quad C_* := \bar{C} n 2^6 16^{\tau+1} > 1$$

assume we have two solutions $(V_1, v_1), (V_2, v_2)$ of

$$V_i - V_i \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V_i) - v_i, \quad |V_i|_{s/2} \leq \frac{C_* \varepsilon}{\gamma s^\tau} \leq s/4, \quad i = 1, 2.$$

Let $\hat{V} = V_1 - V_2$, $\hat{v} = \hat{v}_1 - \hat{v}_2$, $\hat{P} = P \circ (\text{Id} - V_1) - P \circ (\text{Id} - V_2)$, then:

$$\hat{V} - \hat{V} \circ (\text{Id} + \alpha) = \hat{P} - \hat{v}, \quad \hat{v} = [\hat{P}].$$

Using Taylor formula

$$|\hat{P}|_{s/4} \leq |DP|_{s/2} |\hat{V}|_{s/4} \leq 2s^{-1} \varepsilon |\hat{V}|_0, \quad |\hat{P} - [\hat{P}]|_{s/4} \leq |\hat{P}|_{s/4} \leq 2s^{-1} \varepsilon |\hat{V}|_0$$

and using the cohomological equation $([\hat{V}] = [V_1] - [V_2] = 0)$

$$|\hat{V}|_0 \leq \frac{4\bar{C}}{\gamma s^\tau} |\hat{P} - [\hat{P}]|_{s/4} \leq \frac{8\bar{C}}{\gamma s^{\tau+1}} \varepsilon |\hat{V}|_0 \leq \frac{C_*}{\gamma s^{\tau+1}} \varepsilon |\hat{V}|_0 \leq |\hat{V}|_0/4.$$

Local uniqueness of the KAM normal norm

For any real-analytic $P : \mathbb{T}^n \rightarrow \mathbb{R}^n$ satisfying

$$\varepsilon := |P|_s \leq c_* \gamma s^{\tau+1}, \quad c_* = (4C_*)^{-1} < 1, \quad C_* := \bar{C} n 2^6 16^{\tau+1} > 1$$

assume we have two solutions $(V_1, v_1), (V_2, v_2)$ of

$$V_i - V_i \circ (\text{Id} + \alpha) = P \circ (\text{Id} - V_i) - v_i, \quad |V_i|_{s/2} \leq \frac{C_* \varepsilon}{\gamma s^\tau} \leq s/4, \quad i = 1, 2.$$

Let $\hat{V} = V_1 - V_2$, $\hat{v} = \hat{v}_1 - \hat{v}_2$, $\hat{P} = P \circ (\text{Id} - V_1) - P \circ (\text{Id} - V_2)$, then:

$$\hat{V} - \hat{V} \circ (\text{Id} + \alpha) = \hat{P} - \hat{v}, \quad \hat{v} = [\hat{P}].$$

Using Taylor formula

$$|\hat{P}|_{s/4} \leq |DP|_{s/2} |\hat{V}|_{s/4} \leq 2s^{-1} \varepsilon |\hat{V}|_0, \quad |\hat{P} - [\hat{P}]|_{s/4} \leq |\hat{P}|_{s/4} \leq 2s^{-1} \varepsilon |\hat{V}|_0$$

and using the cohomological equation $([\hat{V}] = [V_1] - [V_2] = 0)$

$$|\hat{V}|_0 \leq \frac{4\bar{C}}{\gamma s^\tau} |\hat{P} - [\hat{P}]|_{s/4} \leq \frac{8\bar{C}}{\gamma s^{\tau+1}} \varepsilon |\hat{V}|_0 \leq \frac{C_*}{\gamma s^{\tau+1}} \varepsilon |\hat{V}|_0 \leq |\hat{V}|_0/4.$$

Hence $\hat{V} = 0 \Rightarrow V_1 = V_2 \Rightarrow \hat{P} = 0 \Rightarrow \hat{v} = 0 \Rightarrow v_1 = v_2$.

Failure of the Picard method (contraction principle)

KAM normal form III

Abed Bounemoura

Failure of the Picard method (contraction principle)

Let \mathcal{A}_s the space of real-analytic vector fields, \mathcal{A}_s^0 the subspace with zero-average, and given $\alpha \in K_\gamma^\tau$, consider the bounded linear operator

$$\mathcal{L}_\alpha : \mathcal{A}_s \rightarrow \mathcal{A}_s^0 \quad \mathcal{L}_\alpha(V) = V - V \circ (\text{Id} + \alpha).$$

Failure of the Picard method (contraction principle)

Let \mathcal{A}_s the space of real-analytic vector fields, \mathcal{A}_s^0 the subspace with zero-average, and given $\alpha \in K_\gamma^\tau$, consider the bounded linear operator

$$\mathcal{L}_\alpha : \mathcal{A}_s \rightarrow \mathcal{A}_s^0 \quad \mathcal{L}_\alpha(V) = V - V \circ (\text{Id} + \alpha).$$

Now given $P \in \mathcal{A}_s$, consider the bounded non-linear operator

$$\mathcal{N}_P(V) = P \circ (\text{Id} - V) - v, \quad v = v(V, P) := [P \circ (\text{Id} - V)].$$

Failure of the Picard method (contraction principle)

Let \mathcal{A}_s the space of real-analytic vector fields, \mathcal{A}_s^0 the subspace with zero-average, and given $\alpha \in K_\gamma^\tau$, consider the bounded linear operator

$$\mathcal{L}_\alpha : \mathcal{A}_s \rightarrow \mathcal{A}_s^0 \quad \mathcal{L}_\alpha(V) = V - V \circ (\text{Id} + \alpha).$$

Now given $P \in \mathcal{A}_s$, consider the bounded non-linear operator

$$\mathcal{N}_P(V) = P \circ (\text{Id} - V) - v, \quad v = v(V, P) := [P \circ (\text{Id} - V)].$$

Then the conjugacy equation can be written as

$$\mathcal{L}_\alpha(V) = \mathcal{N}_P(V) \iff V = \mathcal{F}_{\alpha, P}(V), \quad \mathcal{F}_{\alpha, P} := \mathcal{L}_\alpha^{-1} \circ \mathcal{N}_P.$$

Failure of the Picard method (contraction principle)

Let \mathcal{A}_s the space of real-analytic vector fields, \mathcal{A}_s^0 the subspace with zero-average, and given $\alpha \in K_\gamma^\tau$, consider the bounded linear operator

$$\mathcal{L}_\alpha : \mathcal{A}_s \rightarrow \mathcal{A}_s^0 \quad \mathcal{L}_\alpha(V) = V - V \circ (\text{Id} + \alpha).$$

Now given $P \in \mathcal{A}_s$, consider the bounded non-linear operator

$$\mathcal{N}_P(V) = P \circ (\text{Id} - V) - v, \quad v = v(V, P) := [P \circ (\text{Id} - V)].$$

Then the conjugacy equation can be written as

$$\mathcal{L}_\alpha(V) = \mathcal{N}_P(V) \iff V = \mathcal{F}_{\alpha, P}(V), \quad \mathcal{F}_{\alpha, P} := \mathcal{L}_\alpha^{-1} \circ \mathcal{N}_P.$$

Let $\varepsilon := |P|_s$ and $\mathcal{B}_\varepsilon := \{V \in \mathcal{A}_{s/2}^0 \mid |V|_{s/2} \leq \varepsilon\}$.

Failure of the Picard method (contraction principle)

Let \mathcal{A}_s the space of real-analytic vector fields, \mathcal{A}_s^0 the subspace with zero-average, and given $\alpha \in K_\gamma^\tau$, consider the bounded linear operator

$$\mathcal{L}_\alpha : \mathcal{A}_s \rightarrow \mathcal{A}_s^0 \quad \mathcal{L}_\alpha(V) = V - V \circ (\text{Id} + \alpha).$$

Now given $P \in \mathcal{A}_s$, consider the bounded non-linear operator

$$\mathcal{N}_P(V) = P \circ (\text{Id} - V) - v, \quad v = v(V, P) := [P \circ (\text{Id} - V)].$$

Then the conjugacy equation can be written as

$$\mathcal{L}_\alpha(V) = \mathcal{N}_P(V) \iff V = \mathcal{F}_{\alpha, P}(V), \quad \mathcal{F}_{\alpha, P} := \mathcal{L}_\alpha^{-1} \circ \mathcal{N}_P.$$

Let $\varepsilon := |P|_s$ and $\mathcal{B}_\varepsilon := \{V \in \mathcal{A}_{s/2}^0 \mid |V|_{s/2} \leq \varepsilon\}$. Then \mathcal{N}_P is a contraction of \mathcal{B}_ε for $\varepsilon < s/4$.

Failure of the Picard method (contraction principle)

Let \mathcal{A}_s the space of real-analytic vector fields, \mathcal{A}_s^0 the subspace with zero-average, and given $\alpha \in K_\gamma^\tau$, consider the bounded linear operator

$$\mathcal{L}_\alpha : \mathcal{A}_s \rightarrow \mathcal{A}_s^0 \quad \mathcal{L}_\alpha(V) = V - V \circ (\text{Id} + \alpha).$$

Now given $P \in \mathcal{A}_s$, consider the bounded non-linear operator

$$\mathcal{N}_P(V) = P \circ (\text{Id} - V) - v, \quad v = v(V, P) := [P \circ (\text{Id} - V)].$$

Then the conjugacy equation can be written as

$$\mathcal{L}_\alpha(V) = \mathcal{N}_P(V) \iff V = \mathcal{F}_{\alpha, P}(V), \quad \mathcal{F}_{\alpha, P} := \mathcal{L}_\alpha^{-1} \circ \mathcal{N}_P.$$

Let $\varepsilon := |P|_s$ and $\mathcal{B}_\varepsilon := \{V \in \mathcal{A}_{s/2}^0 \mid |V|_{s/2} \leq \varepsilon\}$. Then \mathcal{N}_P is a contraction of \mathcal{B}_ε for $\varepsilon < s/4$. If \mathcal{L}_α^{-1} were a bounded operator

$$|\mathcal{L}_\alpha^{-1}(X)|_{s/2} \leq C|X|_{s/2}, \quad X = \mathcal{N}_P(V), \quad C \geq 1$$

then $\mathcal{F}_{\alpha, P}$ would be a contraction of $\mathcal{B}_{C\varepsilon}$ for $C\varepsilon < s/4$.

Failure of the Picard method (contraction principle)

Let \mathcal{A}_s the space of real-analytic vector fields, \mathcal{A}_s^0 the subspace with zero-average, and given $\alpha \in K_\gamma^\tau$, consider the bounded linear operator

$$\mathcal{L}_\alpha : \mathcal{A}_s \rightarrow \mathcal{A}_s^0 \quad \mathcal{L}_\alpha(V) = V - V \circ (\text{Id} + \alpha).$$

Now given $P \in \mathcal{A}_s$, consider the bounded non-linear operator

$$\mathcal{N}_P(V) = P \circ (\text{Id} - V) - v, \quad v = v(V, P) := [P \circ (\text{Id} - V)].$$

Then the conjugacy equation can be written as

$$\mathcal{L}_\alpha(V) = \mathcal{N}_P(V) \iff V = \mathcal{F}_{\alpha, P}(V), \quad \mathcal{F}_{\alpha, P} := \mathcal{L}_\alpha^{-1} \circ \mathcal{N}_P.$$

Let $\varepsilon := |P|_s$ and $\mathcal{B}_\varepsilon := \{V \in \mathcal{A}_{s/2}^0 \mid |V|_{s/2} \leq \varepsilon\}$. Then \mathcal{N}_P is a contraction of \mathcal{B}_ε for $\varepsilon < s/4$. **If \mathcal{L}_α^{-1} were a bounded operator**

$$|\mathcal{L}_\alpha^{-1}(X)|_{s/2} \leq C|X|_{s/2}, \quad X = \mathcal{N}_P(V), \quad C \geq 1$$

then $\mathcal{F}_{\alpha, P}$ would be a contraction of $\mathcal{B}_{C\varepsilon}$ for $C\varepsilon < s/4$. Unfortunately

$$|\mathcal{L}_\alpha^{-1}(X)|_{s/2-\sigma} \leq C(\sigma)|X|_{s/2}, \quad 0 < \sigma \leq /2, \quad \lim_{\sigma \rightarrow 0} C(\sigma) = +\infty.$$

Newton method: quadratic remainder

KAM normal form III

Abed Bounemoura

Newton method: quadratic remainder

The basic idea is to use $\text{Id} + \tilde{U}$, where \tilde{U} solves the cohomological equation, to conjugate $F = T_\alpha + P$ to $F_+ = T_\alpha + P_+$ with $|P_+| \ll |P|$.

Newton method: quadratic remainder

The basic idea is to use $\text{Id} + \tilde{U}$, where \tilde{U} solves the cohomological equation, to conjugate $F = T_\alpha + P$ to $F_+ = T_\alpha + P_+$ with $|P_+| \ll |P|$.

$$F_+ = (\text{Id} + \tilde{U}) \circ F \circ (\text{Id} + \tilde{U})^{-1} = T_\alpha + \tilde{u} + R_+ = T_\alpha + [P] + R_+$$

Newton method: quadratic remainder

The basic idea is to use $\text{Id} + \tilde{U}$, where \tilde{U} solves the cohomological equation, to conjugate $F = T_\alpha + P$ to $F_+ = T_\alpha + P_+$ with $|P_+| \ll |P|$.

$$F_+ = (\text{Id} + \tilde{U}) \circ F \circ (\text{Id} + \tilde{U})^{-1} = T_\alpha + \tilde{u} + R_+ = T_\alpha + [P] + R_+$$

$$R_+ = \left(\tilde{U} \circ (\text{Id} + \alpha) - \tilde{U} \circ (\text{Id} + \alpha) \circ (\text{Id} + P) \right) \circ (\text{Id} + \tilde{U})^{-1}.$$

Newton method: quadratic remainder

The basic idea is to use $\text{Id} + \tilde{U}$, where \tilde{U} solves the cohomological equation, to conjugate $F = T_\alpha + P$ to $F_+ = T_\alpha + P_+$ with $|P_+| \ll |P|$.

$$F_+ = (\text{Id} + \tilde{U}) \circ F \circ (\text{Id} + \tilde{U})^{-1} = T_\alpha + \tilde{u} + R_+ = T_\alpha + [P] + R_+$$

$$R_+ = \left(\tilde{U} \circ (\text{Id} + \alpha) - \tilde{U} \circ (\text{Id} + \alpha) \circ (\text{Id} + P) \right) \circ (\text{Id} + \tilde{U})^{-1}.$$

Problem: $|P_+| \sim |\tilde{u}| + |R_+| \sim \varepsilon + \varepsilon^2 \sim \varepsilon$.

Newton method: quadratic remainder

The basic idea is to use $\text{Id} + \tilde{U}$, where \tilde{U} solves the cohomological equation, to conjugate $F = T_\alpha + P$ to $F_+ = T_\alpha + P_+$ with $|P_+| \ll |P|$.

$$F_+ = (\text{Id} + \tilde{U}) \circ F \circ (\text{Id} + \tilde{U})^{-1} = T_\alpha + \tilde{u} + R_+ = T_\alpha + [P] + R_+$$

$$R_+ = \left(\tilde{U} \circ (\text{Id} + \alpha) - \tilde{U} \circ (\text{Id} + \alpha) \circ (\text{Id} + P) \right) \circ (\text{Id} + \tilde{U})^{-1}.$$

Problem: $|P_+| \sim |\tilde{u}| + |R_+| \sim \varepsilon + \varepsilon^2 \sim \varepsilon$. Temporary solution: forget about \tilde{u} , assume $P_+ = R_+$ (this will be achieved using $v = \tilde{u} + O(\varepsilon^2)$).

Newton method: quadratic remainder

The basic idea is to use $\text{Id} + \tilde{U}$, where \tilde{U} solves the cohomological equation, to conjugate $F = T_\alpha + P$ to $F_+ = T_\alpha + P_+$ with $|P_+| \ll |P|$.

$$F_+ = (\text{Id} + \tilde{U}) \circ F \circ (\text{Id} + \tilde{U})^{-1} = T_\alpha + \tilde{u} + R_+ = T_\alpha + [P] + R_+$$

$$R_+ = \left(\tilde{U} \circ (\text{Id} + \alpha) - \tilde{U} \circ (\text{Id} + \alpha) \circ (\text{Id} + P) \right) \circ (\text{Id} + \tilde{U})^{-1}.$$

Problem: $|P_+| \sim |\tilde{u}| + |R_+| \sim \varepsilon + \varepsilon^2 \sim \varepsilon$. Temporary solution: forget about \tilde{u} , assume $P_+ = R_+$ (this will be achieved using $v = \tilde{u} + O(\varepsilon^2)$). Let $0 < \sigma \leq s$, one can estimate

$$|R_+|_{s-2\sigma} \leq |D\tilde{U}|_{s-\sigma} |P|_s \leq \frac{\bar{C}\varepsilon^2}{\gamma\sigma^{\tau+1}} := \bar{C}(\sigma)\varepsilon^2$$

Newton method: quadratic remainder

The basic idea is to use $\text{Id} + \tilde{U}$, where \tilde{U} solves the cohomological equation, to conjugate $F = T_\alpha + P$ to $F_+ = T_\alpha + P_+$ with $|P_+| \ll |P|$.

$$F_+ = (\text{Id} + \tilde{U}) \circ F \circ (\text{Id} + \tilde{U})^{-1} = T_\alpha + \tilde{u} + R_+ = T_\alpha + [P] + R_+$$

$$R_+ = \left(\tilde{U} \circ (\text{Id} + \alpha) - \tilde{U} \circ (\text{Id} + \alpha) \circ (\text{Id} + P) \right) \circ (\text{Id} + \tilde{U})^{-1}.$$

Problem: $|P_+| \sim |\tilde{u}| + |R_+| \sim \varepsilon + \varepsilon^2 \sim \varepsilon$. Temporary solution: forget about \tilde{u} , assume $P_+ = R_+$ (this will be achieved using $v = \tilde{u} + O(\varepsilon^2)$). Let $0 < \sigma \leq s$, one can estimate

$$|R_+|_{s-2\sigma} \leq |D\tilde{U}|_{s-\sigma} |P|_s \leq \frac{\bar{C}\varepsilon^2}{\gamma\sigma^{\tau+1}} := \bar{C}(\sigma)\varepsilon^2$$

(assuming $\bar{C}(\sigma) \leq 1/\sigma$) and assuming ε is small enough so that

$$\bar{C}(\sigma)\varepsilon < 1/2 \implies |P|_s \leq |\tilde{U}|_{s-\sigma} < \sigma/2, \quad |D\tilde{U}|_{s-\sigma} < 1/2.$$

Newton method: iteration

KAM normal form III

Abed Bounemoura

Newton method: iteration

For σ to be chosen, we will require $\bar{C}(\sigma)\varepsilon \leq \kappa$ for some $\kappa < 1/2$.

Newton method: iteration

For σ to be chosen, we will require $\bar{C}(\sigma)\varepsilon \leq \kappa$ for some $\kappa < 1/2$. Set $P_1 = P_+$, $s_1 = s - 2\sigma$, then $F = T_\alpha + P$ is conjugated to $F_1 = T_\alpha + P_1$ with $|P_1|_{s_1} \leq \bar{C}(\sigma)\varepsilon^2 \leq \kappa\varepsilon$.

Newton method: iteration

For σ to be chosen, we will require $\bar{C}(\sigma)\varepsilon \leq \kappa$ for some $\kappa < 1/2$. Set $P_1 = P_+$, $s_1 = s - 2\sigma$, then $F = T_\alpha + P$ is conjugated to $F_1 = T_\alpha + P_1$ with $|P_1|_{s_1} \leq \bar{C}(\sigma)\varepsilon^2 \leq \kappa\varepsilon$. To proceed by induction, choose

$$\sigma_j := 2^{-j}\sigma, \quad s_0 := s, \quad s_{j+1} := s_j - 2\sigma_j, \quad \varepsilon_j := \kappa^j \varepsilon$$

Newton method: iteration

For σ to be chosen, we will require $\bar{C}(\sigma)\varepsilon \leq \kappa$ for some $\kappa < 1/2$. Set $P_1 = P_+$, $s_1 = s - 2\sigma$, then $F = T_\alpha + P$ is conjugated to $F_1 = T_\alpha + P_1$ with $|P_1|_{s_1} \leq \bar{C}(\sigma)\varepsilon^2 \leq \kappa\varepsilon$. To proceed by induction, choose

$$\sigma_j := 2^{-j}\sigma, \quad s_0 := s, \quad s_{j+1} := s_j - 2\sigma_j, \quad \varepsilon_j := \kappa^j \varepsilon$$

then $F = T_\alpha + P$ is conjugated to $F_j = T_\alpha + P_j$ with $|P_j|_{s_j} \leq \varepsilon_j$ if,

$$\bar{C}(\sigma_j)\varepsilon_j = (\kappa/2^{\tau+1})^j \bar{C}(\sigma_0)\varepsilon_0 < 1/2 \iff \bar{C}(\sigma_0)\varepsilon_0 \leq \kappa \leq 2^{-(\tau+1)}.$$

Newton method: iteration

For σ to be chosen, we will require $\bar{C}(\sigma)\varepsilon \leq \kappa$ for some $\kappa < 1/2$. Set $P_1 = P_+$, $s_1 = s - 2\sigma$, then $F = T_\alpha + P$ is conjugated to $F_1 = T_\alpha + P_1$ with $|P_1|_{s_1} \leq \bar{C}(\sigma)\varepsilon^2 \leq \kappa\varepsilon$. To proceed by induction, choose

$$\sigma_j := 2^{-j}\sigma, \quad s_0 := s, \quad s_{j+1} := s_j - 2\sigma_j, \quad \varepsilon_j := \kappa^j \varepsilon$$

then $F = T_\alpha + P$ is conjugated to $F_j = T_\alpha + P_j$ with $|P_j|_{s_j} \leq \varepsilon_j$ if,

$$\bar{C}(\sigma_j)\varepsilon_j = (\kappa/2^{\tau+1})^j \bar{C}(\sigma_0)\varepsilon_0 < 1/2 \iff \bar{C}(\sigma_0)\varepsilon_0 \leq \kappa \leq 2^{-(\tau+1)}.$$

Now choose $\sigma = \sigma_0 = s/8$ so that $s_j \rightarrow s - 4\sigma \geq s/2$ (and $\bar{C}(\sigma) \leq 1/\sigma$ since $s \leq 1$) and choose $\kappa := 2^{-(\tau+2)}$

Newton method: iteration

For σ to be chosen, we will require $\bar{C}(\sigma)\varepsilon \leq \kappa$ for some $\kappa < 1/2$. Set $P_1 = P_+$, $s_1 = s - 2\sigma$, then $F = T_\alpha + P$ is conjugated to $F_1 = T_\alpha + P_1$ with $|P_1|_{s_1} \leq \bar{C}(\sigma)\varepsilon^2 \leq \kappa\varepsilon$. To proceed by induction, choose

$$\sigma_j := 2^{-j}\sigma, \quad s_0 := s, \quad s_{j+1} := s_j - 2\sigma_j, \quad \varepsilon_j := \kappa^j \varepsilon$$

then $F = T_\alpha + P$ is conjugated to $F_j = T_\alpha + P_j$ with $|P_j|_{s_j} \leq \varepsilon_j$ if,

$$\bar{C}(\sigma_j)\varepsilon_j = (\kappa/2^{\tau+1})^j \bar{C}(\sigma_0)\varepsilon_0 < 1/2 \iff \bar{C}(\sigma_0)\varepsilon_0 \leq \kappa \leq 2^{-(\tau+1)}.$$

Now choose $\sigma = \sigma_0 = s/8$ so that $s_j \rightarrow s - 4\sigma \geq s/2$ (and $\bar{C}(\sigma) \leq 1/\sigma$ since $s \leq 1$) and choose $\kappa := 2^{-(\tau+2)}$ so that

$$\bar{C}(\sigma_0)\varepsilon_0 = \bar{C}(s/8)\varepsilon \leq 2^{-(\tau+2)} \implies \bar{C}(\sigma_j)\varepsilon_j = 2^{-j} \bar{C}(\sigma_0)\varepsilon_0$$

and the infinite composition $\text{Id} + U = \dots \circ (\text{Id} + \tilde{U}_1) \circ (\text{Id} + \tilde{U}_0)$ converges

$$|DU|_{s/2} \leq 2 \sum_{j \in \mathbb{N}} |D\tilde{U}_j|_{s/2} \leq 2 \sum_{j \in \mathbb{N}} \bar{C}(\sigma_j)\varepsilon_j \leq 4\bar{C}(\sigma_0)\varepsilon_0.$$

Newton method: iteration

For σ to be chosen, we will require $\bar{C}(\sigma)\varepsilon \leq \kappa$ for some $\kappa < 1/2$. Set $P_1 = P_+$, $s_1 = s - 2\sigma$, then $F = T_\alpha + P$ is conjugated to $F_1 = T_\alpha + P_1$ with $|P_1|_{s_1} \leq \bar{C}(\sigma)\varepsilon^2 \leq \kappa\varepsilon$. To proceed by induction, choose

$$\sigma_j := 2^{-j}\sigma, \quad s_0 := s, \quad s_{j+1} := s_j - 2\sigma_j, \quad \varepsilon_j := \kappa^j \varepsilon$$

then $F = T_\alpha + P$ is conjugated to $F_j = T_\alpha + P_j$ with $|P_j|_{s_j} \leq \varepsilon_j$ if,

$$\bar{C}(\sigma_j)\varepsilon_j = (\kappa/2^{\tau+1})^j \bar{C}(\sigma_0)\varepsilon_0 < 1/2 \iff \bar{C}(\sigma_0)\varepsilon_0 \leq \kappa \leq 2^{-(\tau+1)}.$$

Now choose $\sigma = \sigma_0 = s/8$ so that $s_j \rightarrow s - 4\sigma \geq s/2$ (and $\bar{C}(\sigma) \leq 1/\sigma$ since $s \leq 1$) and choose $\kappa := 2^{-(\tau+2)}$ so that

$$\bar{C}(\sigma_0)\varepsilon_0 = \bar{C}(s/8)\varepsilon \leq 2^{-(\tau+2)} \implies \bar{C}(\sigma_j)\varepsilon_j = 2^{-j} \bar{C}(\sigma_0)\varepsilon_0$$

and the infinite composition $\text{Id} + U = \dots \circ (\text{Id} + \tilde{U}_1) \circ (\text{Id} + \tilde{U}_0)$ converges

$$|DU|_{s/2} \leq 2 \sum_{j \in \mathbb{N}} |D\tilde{U}_j|_{s/2} \leq 2 \sum_{j \in \mathbb{N}} \bar{C}(\sigma_j)\varepsilon_j \leq 4\bar{C}(\sigma_0)\varepsilon_0.$$

Actually the sequence $|P_j|_{s_j} \rightarrow 0$ “essentially” quadratically.