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Abed Bounemoura

Analytic functions with analytic parameters

Let K = K τ
γ . Given r > 0 define

Kr := {a ∈ Cn/Zn | d(a,K) < r} =
⋃
α∈K

D(α, r).

Clearly Kr is open but beware it is not convex in general. Given s > 0,
we consider analytic vector fields P : Tn

s × Kr → Cn

P(θ, a) = Pa(θ) =
∑
k∈Zn

Pk(a)e2πik·θ, Pk(a) : Kr → Cn.

with the norm
|P|s,r := sup

a∈Kr

∑
k∈Zn

|Pk(a)|e2πs|k|

If P(θ, a) = P0(a) = p(a), then for all s ≥ 0, |p|s,r = ||p||r and if
P(θ, a) = P(θ), then for all r ≥ 0, |P|s,r = |P|s .



KAM normal form IV

Abed Bounemoura

Analytic functions with analytic parameters

Let K = K τ
γ .

Given r > 0 define

Kr := {a ∈ Cn/Zn | d(a,K) < r} =
⋃
α∈K

D(α, r).

Clearly Kr is open but beware it is not convex in general. Given s > 0,
we consider analytic vector fields P : Tn

s × Kr → Cn

P(θ, a) = Pa(θ) =
∑
k∈Zn

Pk(a)e2πik·θ, Pk(a) : Kr → Cn.

with the norm
|P|s,r := sup

a∈Kr

∑
k∈Zn

|Pk(a)|e2πs|k|

If P(θ, a) = P0(a) = p(a), then for all s ≥ 0, |p|s,r = ||p||r and if
P(θ, a) = P(θ), then for all r ≥ 0, |P|s,r = |P|s .



KAM normal form IV

Abed Bounemoura

Analytic functions with analytic parameters

Let K = K τ
γ . Given r > 0 define

Kr := {a ∈ Cn/Zn | d(a,K) < r} =
⋃
α∈K

D(α, r).

Clearly Kr is open but beware it is not convex in general. Given s > 0,
we consider analytic vector fields P : Tn

s × Kr → Cn

P(θ, a) = Pa(θ) =
∑
k∈Zn

Pk(a)e2πik·θ, Pk(a) : Kr → Cn.

with the norm
|P|s,r := sup

a∈Kr

∑
k∈Zn

|Pk(a)|e2πs|k|

If P(θ, a) = P0(a) = p(a), then for all s ≥ 0, |p|s,r = ||p||r and if
P(θ, a) = P(θ), then for all r ≥ 0, |P|s,r = |P|s .



KAM normal form IV

Abed Bounemoura

Analytic functions with analytic parameters

Let K = K τ
γ . Given r > 0 define

Kr := {a ∈ Cn/Zn | d(a,K) < r} =
⋃
α∈K

D(α, r).

Clearly Kr is open but beware it is not convex in general.

Given s > 0,
we consider analytic vector fields P : Tn

s × Kr → Cn

P(θ, a) = Pa(θ) =
∑
k∈Zn

Pk(a)e2πik·θ, Pk(a) : Kr → Cn.

with the norm
|P|s,r := sup

a∈Kr

∑
k∈Zn

|Pk(a)|e2πs|k|

If P(θ, a) = P0(a) = p(a), then for all s ≥ 0, |p|s,r = ||p||r and if
P(θ, a) = P(θ), then for all r ≥ 0, |P|s,r = |P|s .



KAM normal form IV

Abed Bounemoura

Analytic functions with analytic parameters

Let K = K τ
γ . Given r > 0 define

Kr := {a ∈ Cn/Zn | d(a,K) < r} =
⋃
α∈K

D(α, r).

Clearly Kr is open but beware it is not convex in general. Given s > 0,
we consider analytic vector fields P : Tn

s × Kr → Cn

P(θ, a) = Pa(θ) =
∑
k∈Zn

Pk(a)e2πik·θ, Pk(a) : Kr → Cn.

with the norm
|P|s,r := sup

a∈Kr

∑
k∈Zn

|Pk(a)|e2πs|k|

If P(θ, a) = P0(a) = p(a), then for all s ≥ 0, |p|s,r = ||p||r and if
P(θ, a) = P(θ), then for all r ≥ 0, |P|s,r = |P|s .



KAM normal form IV

Abed Bounemoura

Analytic functions with analytic parameters

Let K = K τ
γ . Given r > 0 define

Kr := {a ∈ Cn/Zn | d(a,K) < r} =
⋃
α∈K

D(α, r).

Clearly Kr is open but beware it is not convex in general. Given s > 0,
we consider analytic vector fields P : Tn

s × Kr → Cn

P(θ, a) = Pa(θ) =
∑
k∈Zn

Pk(a)e2πik·θ, Pk(a) : Kr → Cn.

with the norm
|P|s,r := sup

a∈Kr

∑
k∈Zn

|Pk(a)|e2πs|k|

If P(θ, a) = P0(a) = p(a), then for all s ≥ 0, |p|s,r = ||p||r

and if
P(θ, a) = P(θ), then for all r ≥ 0, |P|s,r = |P|s .



KAM normal form IV

Abed Bounemoura

Analytic functions with analytic parameters

Let K = K τ
γ . Given r > 0 define

Kr := {a ∈ Cn/Zn | d(a,K) < r} =
⋃
α∈K

D(α, r).

Clearly Kr is open but beware it is not convex in general. Given s > 0,
we consider analytic vector fields P : Tn

s × Kr → Cn

P(θ, a) = Pa(θ) =
∑
k∈Zn

Pk(a)e2πik·θ, Pk(a) : Kr → Cn.

with the norm
|P|s,r := sup

a∈Kr

∑
k∈Zn

|Pk(a)|e2πs|k|

If P(θ, a) = P0(a) = p(a), then for all s ≥ 0, |p|s,r = ||p||r and if
P(θ, a) = P(θ), then for all r ≥ 0, |P|s,r = |P|s .



KAM normal form IV

Abed Bounemoura

KAM normal form

Theorem (Arnold)

Fix γ > 0, τ > n and 0 < s ≤ 1, and define

σ := s/8, C(σ) :=
C̄

γστ+1
, κ := 2τ+2, r :=

κ

2C(σ)
.

Then for any α ∈ K and any real-analytic P : Tn × Kr → Rn satisfying

ε := |P|s,r ≤
r

64n

there exist a unique couple (U, v), where U : Tn → Rn is real-analytic
with zero average and v ∈ Rn, such that for F = Tα + P, Φ = Id + U
and Ψ = Φ−1 = Id− V , we have

Φ ◦ (F − v) ◦ Φ−1 = Tα.

with the estimates

|V |s/2 ≤ |U|s/2 ≤ 2σC(σ)ε ≤ s/4, |DV |s/2 ≤ 2|DU|s/2 ≤ 8C(σ)ε ≤ 1/2,

|v | ≤ 2ε, Lipα(v) ≤ 32nε

r
≤ 1/2.
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Strategy of the proof

Start with Fa = Ta + Pa, a ∈ Kr , r = κ(2C(σ))−1. Write

Fa = Tα + Pa + (a− α) = Tα + P̂a, P̂a = Pa + (a− α), α ∈ K .

The size of P̂a is bounded by ε+ r ≤ 2r , but its “effective” size is
P̂a − [P̂a] = Pa − [Pa] which is bounded by ε. So

Ũa − Ũa ◦ (Id + α) = P̂a − [P̂a] = Pa − [Pa]

with DŨa bounded by C(σ)ε. Conjugates by Φ̃a = Id + Ũa:

F+
a = Tα + [P̂a] + Ra = Ta + [Pa] + Ra = Id + a + ũ(a) + Ra

with Ra bounded by C(σ)ε(ε+ r) ≤ 2C(σ)εr = κε. Up to now, a was a
“dummy” parameter. Now ϕ̃ = Id + ũ : Kr → Cn will have an inverse
ψ̃ = Id− ṽ : Kr/4 → Cn, hence ψ̃(a) + ũ(ψ̃(a)) = ϕ̃(ψ̃(a)) = a so

F+
ψ(a) = Id + a + Rψ̃(a) = Ta + P+

a , a ∈ Kr/4.

After infinite conjugation by Φ̃ψ̃ = ψ̃ ◦ Φ̃ = Φ̃ ◦ ψ̃

Φ̃ψ̃ : (θ, a) 7→ (θ + Ũ(θ, a), a) 7→ (θ + Ũ(θ, ψ̃(a)), ψ̃(a))

we have ψ = Id− v : K → Rn and Fα−v(α) is conjugated to Tα, α ∈ K .
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we have ψ = Id− v : K → Rn and Fα−v(α) is conjugated to Tα, α ∈ K .



KAM normal form IV

Abed Bounemoura

Strategy of the proof

Start with Fa = Ta + Pa, a ∈ Kr , r = κ(2C(σ))−1. Write

Fa = Tα + Pa + (a− α) = Tα + P̂a, P̂a = Pa + (a− α), α ∈ K .

The size of P̂a is bounded by ε+ r ≤ 2r , but its “effective” size is
P̂a − [P̂a] = Pa − [Pa] which is bounded by ε. So
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P̂a − [P̂a] = Pa − [Pa] which is bounded by ε. So

Ũa − Ũa ◦ (Id + α) = P̂a − [P̂a] = Pa − [Pa]

with DŨa bounded by C(σ)ε. Conjugates by Φ̃a = Id + Ũa:

F+
a = Tα + [P̂a] + Ra = Ta + [Pa] + Ra = Id + a + ũ(a) + Ra

with Ra bounded by C(σ)ε(ε+ r) ≤ 2C(σ)εr = κε. Up to now, a was a
“dummy” parameter. Now ϕ̃ = Id + ũ : Kr → Cn will have an inverse
ψ̃ = Id− ṽ : Kr/4 → Cn, hence ψ̃(a) + ũ(ψ̃(a)) = ϕ̃(ψ̃(a)) = a so

F+
ψ(a) = Id + a + Rψ̃(a) = Ta + P+

a , a ∈ Kr/4.

After infinite conjugation by Φ̃ψ̃ = ψ̃ ◦ Φ̃ = Φ̃ ◦ ψ̃

Φ̃ψ̃ : (θ, a) 7→ (θ + Ũ(θ, a), a) 7→ (θ + Ũ(θ, ψ̃(a)), ψ̃(a))

we have ψ = Id− v : K → Rn and Fα−v(α) is conjugated to Tα, α ∈ K .
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we have ψ = Id− v : K → Rn and Fα−v(α) is conjugated to Tα, α ∈ K .



KAM normal form IV

Abed Bounemoura

Strategy of the proof

Start with Fa = Ta + Pa, a ∈ Kr , r = κ(2C(σ))−1. Write

Fa = Tα + Pa + (a− α) = Tα + P̂a, P̂a = Pa + (a− α), α ∈ K .

The size of P̂a is bounded by ε+ r ≤ 2r , but its “effective” size is
P̂a − [P̂a] = Pa − [Pa] which is bounded by ε. So
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Lipschitz constant for C 1 functions on Kr

For u : Kr → Cn C 1, let us define

Lip(u)r := sup
x 6=y∈Kr

|u(x)− u(y)|
|x − y | .

In general, Lip(u)r is not bounded by ||DU||r !

Lemma
Let u : Kr → Cn C 1. Then u : Kr/2 → Cn is Lipschitz and

Lip(u)r/2 ≤ max{8r−1||u||r , ||Du||3r/4}.

Proof.
Let x 6= y ∈ Kr/2. Then either |x − y | ≤ r/4, but x ∈ B(α, r/2) for
some α ∈ K so y ∈ B(α, 3r/4) hence |u(x)− u(y)| ≤ ||DU||3r/4|x − y |.
Or |x − y | > r/2, but |u(x)− u(y)| ≤ 2||u||r and then

|u(x)− u(y)|
|x − y | < 8r−1||u||r .
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Properties of analytic functions: parameter space

(1) Product. p, q : Kr → C, ||pq||r ≤ ||p||r ||q||r
(2) Derivative. p : Kr → Cn and 0 < ρ ≤ r

sup
l∈Nn

ρ|l|

l!
||∂ lp||r ≤ ||p||r , ||Dp||r−ρ :=

∑
|l|=1

||∂ lp||r−ρ ≤ nρ−1||p||r .

(3) Composition. 0 < ρ ≤ r , u : Kr−ρ → Cn, ||u||r−ρ ≤ ρ

||p ◦ (Id + u)||r−ρ ≤ ||p||r .

(4) Taylor. 0 < ρ ≤ r , u1, u2 : Tn
r−ρ → Cn, ||ui ||r−ρ ≤ ρ

||p ◦ (Id + u1)− p ◦ (Id + u2)||r−ρ ≤ Lip(p)r ||u1 − u2||r−2ρ.

(5) Inverse. ||u||r ≤ r/16n⇒ ||Du||3r/4 ≤ 1/4⇒ Lip(u)r/2 ≤ 1/2,
then ϕ = Id + u : Kr/2 → Cn is an analytic embedding such that
Kr/4 ⊆ ϕ(Kr/2) ⊆ Kr and ϕ−1 = Id− v with

||v ||r/4 ≤ ||u||r , ||Dv ||r/4 ≤ ||Du||3r/4(1− ||Du||3r/4)−1.
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Abed Bounemoura

Properties of analytic functions: dynamical space

(1) Product. P,Q : Tn
s,r → C, |PQ|s,r ≤ |P|s,r |Q|s,r

(2) Derivative. P : Tn
s,r → Cn and 0 < σ ≤ s

∑
l∈Nn

σ|l|

l!
|∂ lP|s−σ,r ≤ |P|s,r , |DP|s−σ :=

∑
|l|=1

|∂ lP|s−σ,r ≤ σ−1|P|s,r .

(3) Composition. 0 < σ ≤ s, U : Tn
s−σ,r → Cn, |U|s−σ,r ≤ σ

|P◦(Id+U)|s−σ,r ≤ |P|s,r , |P◦(Id+U)−P|s−σ,r ≤ σ−1|U|s−σ,r |P|s,r .

(4) Taylor. 0 < σ ≤ s, U1,U2 : Tn
s−σ,r → Cn, |Ui |s−σ,r ≤ σ

|P ◦ (Id + U1)− P ◦ (Id + U2)|s−σ,r ≤ |DP|s,r |U1 − U2|s−σ.

(5) Inverse. 0 < 2σ ≤ s, |U|s−σ,r ≤ σ, |DU|s−σ,r < 1, then
Φ(θ, a) = θ + U(θ, a) : Tn

s−σ → Cn is an analytic embedding such
that Tn

s−2σ ⊆ Φ(Tn
s−σ) ⊆ Tn

s and Φ−1 = Id− V with

|V |s−2σ,r ≤ |U|s−σ,r , |DV |s−2σ,r ≤ |DU|s−σ,r (1− |DU|s−σ,r )−1.
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KAM step

Proposition (KAM step)

Let Fa = Ta + Pa with a ∈ Kr , Pa : Tn
s → Cn, 0 < 2σ < s and assume

ε := |P|s,r ≤
r

64n
, r =

κ

2C(σ)
, C(σ) =

C̄

γστ+1
.

Then there exist analytic embeddings
Φ̃a = Id + Ũa : Tn

s−σ → Tn
s , a ∈ Kr

Ψ̃a = Φ̃−1
a : Tn

s−2σ → Tn
s−σ, a ∈ Kr

ψ̃ = (Id + ũ)−1 = Id− ṽ : Kr/4 → Kr

such that, for a ∈ Kr/4,
F+
a := Φ̃ψ̃(a) ◦ Fψ̃(a) ◦ Φ̃−1

ψ̃(a)
= Ta + P+

a , |P+|s−2σ,r/4 ≤ κε
F+
a ◦ Φ̃ψ̃(a) = Φ̃ψ̃(a) ◦ Fψ̃(a)

|Ũ|s−σ,r ≤ σC(σ)ε, |DŨ|s−σ,r ≤ C(σ)ε,

|ṽ |r/4 ≤ ε, |Dṽ |r/4 ≤ 8nε/r , |Lipṽ |r/8 ≤ 8nε/r .
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KAM normal form IV

Abed Bounemoura

KAM step

Proposition (KAM step)

Let Fa = Ta + Pa with a ∈ Kr , Pa : Tn
s → Cn, 0 < 2σ < s and assume

ε := |P|s,r ≤
r

64n
, r =

κ

2C(σ)
, C(σ) =

C̄

γστ+1
.

Then there exist analytic embeddings
Φ̃a = Id + Ũa : Tn
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|Ũ|s−σ,r ≤ σC(σ)ε, |DŨ|s−σ,r ≤ C(σ)ε,
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KAM normal form IV

Abed Bounemoura

Choice of sequences

Recall C̄ = (τ + 1)!4−1(2π)−τ and κ = 2−(τ+2), then set

ε0 = ε, s0 = s, σ0 = s/8, C̄(σ0) =
C̄

γστ+1
0

, r0 = r =
κ

2C(σ0)
.

Choose σj = 2−jσ0, define sj+1 = sj − 2σj , ŝj+1 = ŝj − σj , εj = κjε0

C̄(σj) = (2κ)−j C̄(σ0), rj :=
κ

2C(σj)
= (2κ)j r0, rj+1 ≤ rj/4.

Then εj → 0, sj → s/2, ŝj → 3s/4, C̄(σj)→ +∞, rj → 0 and∑
j∈N

C̄(σj)εj ≤ 2C̄(σ0)ε0,
∑
j∈N

εj/rj ≤ 2ε0/r0.

The final smallness assumption is ε ≤ r/64n, which implies εj ≤ rj/64n
and allow to apply the KAM step inductively.
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Inductive lemma

Proposition (Inductive lemma)

Let Fa = Ta + Pa with a ∈ Kr , Pa : Tn
s → Cn, 0 < 2σ < s and assume

ε := |P|s,r ≤
r

64n
.

Then for any j ∈ N, there exist analytic embeddings
ψj = ψ̃0 ◦ · · · ◦ ψ̃j = Id− v j : Krj → Kr

Ψj = Ψ̃0
ψ̃0 ◦ · · · ◦ Ψ̃j

ψ̃j = Id− V j : Tn
sj × Krj → Tn

s

Φj = (Ψj)−1 = Φ̃j

ψ̃j ◦ · · · ◦ Φ̃0
ψ̃0 = Id + U j : Tn

s/2 × Krj → Tn
ŝj

such that, for a ∈ Krj
F j
a := Φj

a ◦ Fψj (a) ◦Ψj
a = Ta + P j

a, |P j |sj ,rj ≤ εj
F j
a ◦ Φj

a = Φj
a ◦ Fψj (a)

|Ũ i+1

ψ̃i
|ŝi ,ri ≤ σiC(σi )εi , |DŨ i+1

ψ̃i
|ŝi ,ri ≤ C(σi )εi , i ≤ j − 1

|ṽ i+1|ri ≤ εi , |Dṽ i+1|ri ≤ 8nεi/ri , |Lipṽ i+1|ri/2 ≤ 8nεi/ri , i ≤ j − 1.
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|Ũ i+1

ψ̃i
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Convergence

Since |P j |sj ,rj ≤ εj , for any α ∈ K , F j
α = Tα + P j

α → Tα. Assuming

ψj = Id− v j → ψ on K and Φj = Id + U j → Φ on Tn
s/2 × K , then

F j
α ◦ Φj

α = Φj
α ◦ Fψj (α) =⇒ Tα ◦ Φα = Φα ◦ Fψ(α), α ∈ K .

Convergence of v j (resp. U j) amounts to convergence (in norm) of∑
j(v

j+1 − v j) in C 0(K ,Rn) (resp.
∑

j U
i+1 − U i in A(Tn

s/2,Cn)).

v j+1− v j = ṽ j+1 + [v j ◦ (Id− ṽ j+1)− v j ], U j+1−U j = Ũ j+1

ψ̃j ◦ (Id+U j).

Let us set δ1 =
∑

j≥0 8nεj/rj and δ2 =
∑

j≥0 εj , then{∑
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ψ̃j |ŝj ≤ δ4
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j≥0 Lip(ṽj+1) ≤ δ1∑
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ψ̃j |ŝj ≤ δ3∑
j≥0 |DŨ j+1
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