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Abstract

In these notes we review old and recent results on stochastic properties of periodic Lorentz gases
with finite and infinite horizon, mainly described in terms of the displacement or flight function.
For a short definition, one can think of a periodic Lorentz gas as a unit mass particle moving and
bouncing elastically in a periodic grid of scatterers. We will focus on some results for the discrete
time models (maps) that highlight the difference between finite and infinite horizon. In the last part,
we also mention recent results for continuous time (flows).

Plan of the lecture notes. In Section 1, we provide a general description of discrete time (maps)
Lorentz gases with finite and infinite horizon along with the required terminology, in particular for
the displacement function and the flight function.

In Section 2, we present various stochastic properties of Lorentz gases, first for finite horizon in
Subsection 2.1 and then for infinite horizon in Subsection 2.2. Every stochastic property in the finite
horizon has an analogue in the infinite horizon, but with different types of scalling sequences. Among
other properties, in this section, we will present the Local Limit Theorem for the the displacement
function in the set up of the Lorentz gas with infinite horizon, as proved by Szász & Varjú in [45].

In Section 3, we will go over the main step of the Local Limit Theorem for the the displacement
function in the set up of the Lorentz gas with infinite horizon [45], which requires among others the
notions of Young towers (reviewed in Subsection 3.1.2) and perturbed transfer operators (reviewed
in Subsection 3.2.2). In the same section we will also present the main steps for obtaining error
terms in mixing for the infinite measure preserving Lorentz gas with infinite horizon as in [41].

In Section 4, we will present the Lorentz gas flow as a Zd extension of the a suspension flow over
the billiard map, referred to as Sinai billiard. We will state the mixing results for both finite and
infinite horizon, explain why they are much harder to prove than for maps and review the main line
of argument.

1 General description of periodic Lorentz gases (LG)

The Lorentz gas, a popular model of mathematical physics introduced by Lorentz in 1905 ([31]), is a
dynamical system on the infinite billiard table obtained by removing strictly convex scatterers from
either R × S or R2. This model describes the evolution of a point particle moving freely with unit
velocity and elastic reflections off pairwise disjoint strictly convex obstacles (with smooth boundaries)
located periodically in Zd: on the tube if d = 1 or the plane if d = 2 .

For simplicity, we assume that the scatterers or obstacles are round disks. In all generality, the
obstacles do not need to be round, as long as they are open convex sets with C3 boundaries with
nonzero curvatures and such that the obstacles have pairwise disjoint closures.

1



1.1 Tubular finite horizon LG

A Lorentz tube consists of a unit mass particle moving and bouncing elastically in a periodic grid
of scatterers inside R× S1. Consider the following picture:

Displacement function κ : M → Z is the

difference of cell number between collisions

Flight time: time between collisions

single cell M

︸ ︷︷ ︸
Figure 1: A tubular Lorentz map/flow (finite horizon)

By a periodic grid of scatterers, we mean that the obstacles (round scatterers) are placed period-
ically in tube (a cylinder). One can think of this tube as divided in cells, the dashed lines are only
there to help portraying the division in cells. The dynamics is given by the motion of the particle:
the particle reflects elastically against the obstacles and move along straight lines otherwise. We can
distinguish between the dynamics on the cell, sayM in the notation of the picture and the dynamics
on the entire tube. One can look at the dynamics in discrete or continuous time. As we shall see,
the continuous time dynamics is much harder to study.

A closer look at the discrete time dynamics on the cell. The dynamics on the cell
T :M →M is called the Sinai billiard and it describes the dynamics from one collision to the next.
The phase space is given by

M = {(q, v) : q = position at the boundary of the scatterers , v = speed}.

Recall that the particle goes at unit speed, so it is only the angle that matters. Denote the
obstacles by Oj , with j in some index set. So, the point x = (q, v) ∈M can be described by q ∈ ∂Oj

and the angle φ ∈
[
−π

2 ,
π
2

]
with the normal vector to ∂Oj oriented outside Oj , as illustrated in

Figure 2 below. So, we can be more precise and write

M = {(q, v) : q = position at the boundary of the scatterers , v = speed} =
⋃
j

∂Oj ×
[
−π
2
,
π

2

]
.

tangent line

normalφi

φr

angle of reflection
angle of incidence

Figure 2: Elastic collision with a scatterer: φi = φr = φ.

The billiard map T preserves the measure dµ = cosφdqdφ, Each cell is a finite measure preserving
system (M,T, µ).
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On every cell we have the same type of dynamics. This does not mean that in every cell, the
trajectory is the same, but it follows the same evolution rule. For the Lorentz tube, we number
the cells as . . . ,−2,−1, 0, 1, 2 . . . and thus, we can think of the displacement function as steps in a
random walk (on Z in the picture above). The displacement function (through which we will record
the stochastic properties) is κ0(x) = 0 and for n ≥ 1,

κ :M → Z, κn(x) =
n−1∑
j=0

κ ◦ T j(x) : Cell number at time n.

Entire discrete time dynamics: discrete time tubular LG. The entire dynamics on the
tube can be seen as Z extension by κ of T . That is, define the entire dynamics along with its iterates
by

M̂ =M × Z, T̂ : M̂ → M̂, T̂n(x, ℓ) = (Tx, ℓ+ κn(x)).

Clearly, T̂ preserves the infinite measure µ̂ = µ× LebZ.
One thing to keep in mind about κ is that it has mean zero

∫
κdµ = 0, so it behaves in ‘some

sense’ as a symmetric random walk. The reason for mean zero of κ is translational and reflectional
symmetry. That is, rotating the frame by 180 degrees around any point in the one dimensional lattice
preserves the configuration of scatterers, but it gives a minus sign to the displacement function κ.
This implies that

µ(κ = N) = µ(κ = −N) which implies that

∫
κdµ = 0.

Saying that the LG has finite horizon means that it is impossible to have a trajectory that does
not intersect scatterers, and therefore κ is bounded.

1.2 Tubular infinite horizon LG

Everything that we said before about the tubular finite horizon stays the same in the infinite horizon
with one crucial difference: in this case κ is unbounded, in fact κ /∈ L2(µ). In other words we
no longer have ‘some sort’ of similarity with a random walk on Z with finite moments, but with a
random walk on Z with infinite second moment.

The following picture illustrates infinite horizon:

Figure 3: A tubular Lorentz map/flow (infinite horizon)

Contrary to the finite horizon, the particle can travel arbitrarily far along a corridor. The
horizontal strip between the scatterers is a corridor.

1.3 An example of a two dimensional infinite horizon LG

Figure 4 illustrates an infinite horizon LG in dimension 2 with corridor directions: one horizontal,
one vertical. There are different choices of dividing the lattice into cells, below is just one example:
the red square in Figure 4 is just an example.
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Figure 4: Lorentz gas with two corridor directions.

2 Stochastic properties of finite and infinite horizon dis-

crete time LG

In this section, we present various stochastic properties of Lorentz gases, first for finite horizon in
Subsection 2.1 and then for infinite horizon in Subsection 2.2. Every stochastic property in the finite
horizon has an analogue in the infinite horizon, but with different types of scaling sequences.

We present stochastic properties in terms of κ : M → Zd but all the results mentioned below
hold the flight function V :M → Rd, which gives the distance between consecutive collisions in Rd.
The reason for this is that V and κ are cohomologous:

V (x) = κ(x) +H(x)−H(Tx),

where H − H ◦ T is referred to as a bounded (mean zero) coboundary. To see this, note that for
H(x) = [x]− x, one has κ(x) = [T (x)]− [x] and

V (x) = T (x)− x = T (x)− [T (x)] + [T (x)]− [x] + [x]− x = −H(Tx) +H(x) + κ(x).

2.1 Finite horizon, d = 1, 2

In the finite horizon case, the central limit theorem (CLT)

κn√
n
→d N (0,Σ2) where Σ is a matrix with detΣ ̸= 0 (1)

was first proved by Bunimovich and Sinai in [8]. The statement above is for planar case, so d = 2.
If d = 1, then Σ = σ is a scalar.

The main steps of the proof in [8] are:

� Exponential bound on the autocorrelations of κ. In particular, they showed that are C > 0 and
θ ∈ (0, 1) such that

|
∫
M
κ · κ ◦ Tn dµ| ≤ Cθn for all n ≥ 0.
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This was established via Markov partitions and symbolic dynamics. This was the very hard
step.

� Use the Green–Kubo formula

Σ2 =

∞∑
j=−∞

∫
M
κ · κ ◦ T j dµ

to express the asymptotic covariance matrix as the infinite sum of correlations. Using geometric
arguments, it is shown in [8] that detΣ ̸= 0. (If d = 1, this means σ2 > 0).

� Using a classical CLT criterion for weakly dependent stationary sequences, which essentially
captures the summable decay of autocorrelation for κ , [8] obtained CLT.

In fact, in [8] the authors also proved the functional central limit theorem (also known as invariance
principle). That is, for the planar LG with finite horizon, they showed that(

κ⌊nt⌋√
n

)
t∈[0,1]

d−→ (Wt)t∈[0,1].

This expresses convergence in distribution in C([0, 1],R2) to a Brownian motion Wt with covariance
matrix Σ (as above). This is a refinement of the CLT.

In the finite horizon case, Szász & Varjú in [44] established local central limit theorem

(LCLT) for κ. Let Ψ(x) = 1
(2π)d/2 det(Σ)

e−
1
2
x·Σ−2x be the density of the multivariate Gaussian.

Theorem 2.1 (LCLT for κ in the finite horizon as in [44])

nd/2 µ(κn = N) →n→∞ Ψ(N) (2)

for any N ∈ Z.

This is obtained via a Young tower construction [47] and Fourier transforms captured in terms
perturbed transfer operators as in, for instance, [2]. (We will come back with an explanation in
Subsection 3.2.1).

LCLT not only yields precise asymptotics for the displacement distribution, but also implies
recurrence for infinite measure LG: the probability of returning to a fixed cell decays at a
non-summable rate, ensuring that returns occur infinitely often with probability one.

This a consequence of the ‘Schmidt–Conze’ criterion for Zd extensions over a probability preserv-
ing base: see Conze [13] and Schmidt [46]. In short, one recalls that conservativity/recurrence of T̂
is equivalent to ∑

n

µ̂
(
(M × {0}) ∩ T̂−n(M × {0})

)
=

∑
n

µ(κn = 0) = ∞.

To see the first equality, note that the quantity µ̂
(
(M × {0}) ∩ T̂−n(M × {0})

)
gives the probability

of starting and returning after n collisions in the same cell, that is with displacement equal to 0; this
quantity is therefore equal to µ(κn = 0).

We note that recurrence for the finite measure Sinai billiard map is automatic due the Poincaré
recurrence theorem. For any set A with µ(A) > 0,

∑
n≥1 1A(T

nx) = ∞ for a.e. x ∈ A.

Mixing and mixing rates for the infinite measure T̂ can also be obtained starting from LCLT.
In short, one is interested in understanding the asymptotic behavior of

∫
v · w ◦ T̂n, for a suitable

class of functions v, w defined on M .
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Recall that for v = w = 1M ,

µ̂(M ∩ T̂−nM) = µ(κn = 0).

For a nice summary of this problem and how to generalize to different functions (other than 1M )
see [39].

In [38, 40], Pène later refined the LCLT in [44] in two respects:

� For natural classes of observables v0, w0 defined on M , Pène studied the asymptotics of∫
M
v01{κn=N}w0 ◦ Tn dµ as n→ ∞.

This is referred to as ‘Mixing Local Limit theorem’.

� Speed in the LCLT. In fact, Pène obtained a complete asymptotic expansion (to arbitrarily
order) for ∫

M
v01{κn=N}w0 ◦ Tn dµ, N ∈ Zd.

Using these two ingredients, among others, Pène [38] obtained the complete asymptotic expansion
(to arbitrarily order) of∫

v · w ◦ Tn = Ψ(0)n−d/2

∫
M̂
v dµ̂

∫
M̂
v dµ̂+ complete expansion with precise constants

for M̂ = M × Z2 and a natural class of functions v, w ∈ L1(µ̂) referred to as dynamically Lipschitz
functions. Here Ψ is as in (2).

Almost sure invariance principle (ASIP) and law of iterated logarithms (LIL) for
finite horizon LG

Definition 2.2 An Rd valued process (Yj)j≥0 defined on some probability space (Ω,P) satisfies ASIP
if there exists a probability space (Ω1,P1) (possibly larger than (Ω,P)) and two processes (Y ∗

j )j≥0,
(Zj)j≥0 defined on (Ω1,P1) so that

� (Y0, Y1, . . .) is distributed as (Y ∗
0 , Y

∗
1 , . . .).

� Z0, Z1, . . . are independent and distributed as N (0, I).

�

∣∣∣∑n−1
j=0 Y

∗
j − Σ

∑n−1
j=0 Zj

∣∣∣ = o(nε) for some ε ∈ (0, 1/2) and for some non-degenerate covariance

matrix Σ2.

Equivalently, one says that
∣∣∣∑n−1

j=0 Y
∗
j − Σ ·Wn

∣∣∣ = o(nε), where Wn =
∑n−1

j=0 Zj denotes stan-

dard Brownian motion on Rd at time n.

In short,
∑n−1

j=0 Yj satisfies an ASIP with rate nε for some ε ∈ (0, 12) if there exists some non-

degenerate covariance matrix Σ2 such that, possibly on an enlarged probability space,∣∣∣∣∣∣
n−1∑
j=0

Yj − Σ ·Wn

∣∣∣∣∣∣ = o(nε) (3)

almost surely as n→ ∞, where Wn the standard Brownian motion on Rd at time n.
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It is known that the ASIP implies LIL:

lim sup
n→∞

|
∑n−1

j=0 Yj |√
n · L(Ln)

= a almost surely, for some a ∈ (0,∞),

where L(t) = max(1, log(t)). This is because the LIL is known for the standard Brownian motion.
In [35, 36], Melbourne and Nicol proved that (κ ◦ T j)j≥0 satisfies ASIP in the sense of Defini-

tion 2.2. In short,

|κn − Σ ·Wn| = o(nε), µ almost surely, for ‘good’ ε ∈ (0, 1/2). (4)

Here Σ2 is the covariance matrix in the CLT. The ‘almost surely’ w.r.t. the invariant measure µ
(under T ) was clarified by Korepanov [25]. An immediate consequence of this ASIP is LIL for κ,
that is

lim sup
n→∞

|κn|√
n · L(Ln)

= a almost surely, for some a ∈ (0,∞).

One aim is to prove ASIP with rates, that is to obtain ASIP in (4) for ε very small. The rates
in the ASIP were later improved by Gouëzel in [23] and also, later on by Korepanov [26].

2.2 Infinite horizon, d = 1, 2

Contrary to the case of finite horizon, in the infinite horizon case, κ fails to be L2(µ). This was
established in [45, Proposition 6].

Recall the collection of corridors of vectors depicted in the examples of Figures 3 and 4. By [45,
Proposition 6], there exists a finite collection Corr ⊂ Zd of vectors (the corridor vectors), such that,
for any ξ ∈ Corr there exists Cξ > 0, as N → ∞,

µ(κ = Nξ) = CξN
−3(1 + o(1)).

The event κ = Nξ indicates the next collision with a scatterer at distance |N ||ξ| from the current
position. This implies that µ(|κ| > N) = CN−2(1 + o(1)), for some C > 0; so κ barely fails to be
L2(µ). For generalizations of this statement with expansions in terms of N along with the more
than one type of obstacles being present, see [41, Lemma 4.2] or accounting for the precise size of
the scatterers, see [4, Appendix A].

This tail behaviour determines a different type of scaling in the CLT. In this case we speak of
CLT with a non-standard normalizing sequence, under suitable non-degeneracy conditions:

κn√
n log n

→d N (0,Σ2) (5)

where detΣ ̸= 0 and Σ is obtained by summation over corridors. The non-degeneracy conditions,
relevant only if the scatterers are not positioned at lattice points, are as follows: a) in the case
d = 2, one requires that there exist at least two non-parallel collisionless trajectories in the interior
of the periodic domain; b) when d = 1, one requires that there exists a collisionless trajectory not
orthogonal to the direction of the Z-cover or extension, which is equivalent to our assumption that
κ is unbounded.

We note upfront that the Infinite horizon is not special just because the variance is infinite; it is
special because we have α = 2 stable law, where sums are not outlier-dominated (as in α < 2) but
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built from the cumulative effect of many moderate extremes, giving the Gaussian limit with
√
n log n

scaling.
The form of the CLT in (5) was first conjectured by Bleher [9] and proved rigorously via two

different methods establishing stronger versions of this type of CLT:

(I) Szász and Varjú [45] proved a Local Limit Theorem (LLT), as stated below.

Let Ψ is the density of the Gaussian in the non-standard CLT (5). (In fact, one can de-
scribe Ψ completely independent of the CLT (5), just writing down the formula Ψ(x) =

1
(2π)d/2 det(Σ)

e−
1
2
x·Σ2x).

Theorem 2.3 (LLT for κ as in [45])

(n log n)d/2 µ(κn = N) →n→∞ Ψ(N), for any N ∈ Z.

The method consists in exploiting the associated Young tower, a double or conditional proba-
bility (to be recalled shortly) and some abstract results by Bálint and Gouëzel [6]. In Section 3,
we will go over the terminology and describe the main steps of the proof of Theorem 2.3.

(II) Chernov and Dolgopyat [12] established a functional limit theorem (weak invariance principle),
namely

For s ∈ (0, 1),
κ⌊ns⌋+{ns}(κ⌊ns⌋+1−κ⌊ns⌋)√

n logn
converges as n→ ∞

to a Brownian motion with mean 0 and covariance matrix Σ2.

The method of proof in [12] exploits exponential mixing for the sequence {κ ◦ Tn}n≥1. The
authors develop an argument based on standard pairs to establish a bound on the correlations
for κ:

There exist ϑ ∈ (0, 1) and C > 0so that∣∣∫
M κ · κ ◦ Tn dµ

∣∣ ≤ C · ϑn for all n ≥ 1.

Similar to the finite horizon case, LLT implies recurrence and it can be used (in fact, some
techniques that are used in the proof together with many other ingeredients) to establish:

Mixing and mixing rates for a natural class of functions. This was done by Pène and Terhesiu
in [41] by obtaining error rates in the LLT. In very rough terms, a typical mixing with rates in [41]
says that for ‘good’ functions (not necessarily compactly supported) v, w : M̂ =M × Z → R,∫

M
v · w ◦ T̂n dµ̂ =

Ψ(0)

(n log n)d/2

∫
M
v dµ̂

∫
M
w dµ̂+O

(
1

(n log n)d/2 log n

)
.

For non-zero mean function the error term is optimal: it cannot be improved for v = w = 1M . If
v, w have mean zero, much better error terms are obtained in [41, Theorem 2.5]. In subsection 3.2.2
we will review the main steps of the proof.

Generalized law of iterated logarithms (LIL) for infinite horizon LG
Recall that in the finite horizon, κ satisfies the classical ASIP as in Definition 2.2.
In [7], Bálint and Terhesiu obtained a version of ASIP and generalized LIL for the infinite horizon.

We recall briefly this result. Recall µ(κ = N) = CN−3(1 + o(1)) and define

cn =

√
2C · n · L(n) · LL(n) · (1 + LLn sin2(LLLn)) for L(t) = max(1, log t).
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A main feature of the sequence cn is that
∑

n µ(|κ| > cn) <∞ so that by truncating at cn, one can
work with a new random variable κ1|κ|<cn that is L2(µ). To some extent borrow ideas from variables
with second moments. This is only a small part of the proof, but at least it gives an intuition of why
truncating at a sequence, such as cn, is helpful.

A version of ASIP. In [7], the authors show that there exist a probability space (Ω∗,F∗,P∗)
and two sequences of random vectors (v∗j )j≥0, (Zj)j≥0 so that

� (v∗0, v
∗
1, . . .) is distributed as (κ, κ ◦ T, . . .);

� the vectors Zj , j ≥ 0 are independent and distributed as N (0, I);

such that, almost surely, as n→ ∞,∣∣∣∣∣∣
n−1∑
j=0

v∗j − Γn

n−1∑
j=0

Zj

∣∣∣∣∣∣ = o(cn),

where Γn is the covariance matrix given by Γ2
n = Cov(κ1|κ|<cn) = L(cn)Σ

2 with Σ as in (5). Here,∑n−1
j=0 Zj = Wn, where Wn is the standard Brownian motion in dimension d, at time n. For this

version of ASIP, the information about the small tail µ(κ = N) = CN−3(1 + o(1)) is not required,
all that is needed is that κ is regularly varying of index −2. If κ : M → Z this means that
µ(|κ| > N) = CN−2(1 + o(1)).

In short, this is saying that on an enlarged probability space,∣∣∣∣∣∣κn − Γn

n−1∑
j=0

Zj

∣∣∣∣∣∣ = o(cn).

This is an analogue of Einmahl’s result [21]) obtained in an independent scenario (so the sequence
of independent random variables κ ◦ T j is replaced by a sequence of dependent random variables
Xj). The proof in [7] adapts the strategy of [23] to case of non-L2(µ) observables after truncating at
different levels (with truncation at cn included). The choice of the truncation level is delicate and the
method requires very precise bounds on the second and the fourth moment for partial sums of the
appropriately truncated random variables. To control these moments the authors use the standard
pair method of [12], improving the estimates in [12, 5].

A serious difference between finite horizon ASIP |κn − Σ ·Wn| = o(nε), ε ∈ (0, 1/2) as mentioned

in (4) and the version of ASIP in the infinite horizon
∣∣∣κn − Γn

∑n−1
j=0 Zj

∣∣∣ = o(cn) is that

� Finite horizon. Recall the scaling sequence in the CLT is
√
n: see equation (1). So, dividing

by
√
n in |κn − Σ ·Wn| = o(nε) gives o(nε).

� Infinite horizon. Recall the scaling sequence in the CLT is
√
n log n: see equation (5). In this

case, we see that cn√
n logn

→ ∞.

When compared to the standard ASIP, a specific feature of this ASIP version is that the
rescaling of Brownian motion with the truncated covariance matrix Γn , occurs only for variables
in the non-standard domain of attraction of the normal law. In the previous scenario, there is
no need for truncation.

Is this cn optimal, and as such is is this ASIP version optimal? It seems plausible if one takes
a closer look at Einmahl’s result (see [21, 22] and references therein), but we are not aware of a
rigorous proof.

Generalized law of the iterated logarithm (LIL)
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The main purpose of the ASIP version in the IID random variables with the same tail as κ (see
[21, 22]) is the implication of a precise form of a generalized LIL

Exploiting a consequence of the above ASIP, using the same argument as in [22],

lim sup
n→∞

|κn|
cn

= 1

3 Main ingredients used in the proof of LLT in the in-

finite horizon by Szász and Varjú [45]

The purpose of this section is to recall the main ingredients and steps in the proof of LLT, which we
now recall.

Theorem 3.1 (LLT for κ as in [45])

(n log n)d/2 µ(κn = N) →n→∞ Ψ(N), for any N ∈ Z.

While reviewing the main steps, we will also review the additional steps in obtaining error term
in LLT and mixing for LG as in [41].

Two main ingredients used in [45] are

� Young towers for Sinai billiards as put forward by Young [47] and Chernov [10].

� Transfer operators on the tower (and base of the tower) along with their twisted or perturbed
version.

3.1 Young towers

The purpose of this subsection is to get familiar with the notion of the tower in the easier setting of
a one dimensional maps as in Subsection 3.1.1 and understand the complications that arise in the
Sinai billiard setting as in Subsection 3.1.2. In short, we aim to understand the terminology of the
following result.

Theorem 3.2 (Young [47] and Chernov [10]) The Sinai billiard map can be modelled via a
Young tower.

3.1.1 Young towers in a much easier setting

As to get across the idea of the Young tower we start with a much easier setting, namely that of the
map considered by Liverani et al. in [29]:

f(x) =

{
x(1 + 2αxα), 0 < x < 1

2

2x− 1, 1
2 < x < 1

.

For α ∈ (0, 1), f preserves a probability measure µ that is absolutely continuous w.r.t. Lebesgue
measure.

The tower for f is constructed in [48]. This map exhibits intermittent behavior due to a neutral
fixed point at x = 0.

Although the original map f has neutral behavior near 0 (f ′(0) = 1), one can accelerate f (aka
induce away from the problematic region 0 as to obtain a new map, a uniformly expanding map.

10



0 1

1

0

LSV map

Y

τ = 1

Young tower

base Y = ∆0

...

...

...

...

Figure 5: The LSV map and first return to Y = [1
2
, 1], and the corresponding Young tower

Return time function. We define the first return time to Y by

τ(x) := min{n ≥ 1 | fn(x) ∈ Y }.

Induced map and uniform expansion. The induced map (or first return map)

fY : Y → Y, fY (x) = f τ(x)(x),

is uniformly expanding on each level set

Yj = {x ∈ Y : τ(x) = j}.

The induced map fY is uniformly expanding and preserves a measure µY ≪ Leb. The map fY is
Gibbs–Markov roughly, infinite branch uniformly expanding maps with bounded distortion and big
images. Compared to Young towers, limit theorems are much easier to obtain for Gibbs-Markov maps
than for Young towers. In Subsection 3.2.1 we review the more precise definition of Gibbs-Markov
maps.

Partition of the base. We partition Y into level sets of the return time:

Yj := {x ∈ Y | τ(x) = j}, j ∈ N.

Tower. Define the tower space

∆ := {(x, ℓ) ∈ Y × Z≥0 | 0 ≤ ℓ < τ(x)} =
⊔
j≥1

j−1⊔
ℓ=0

(Yj × {ℓ}) .

Tower map. The tower map F : ∆ → ∆ is given by

F (x, ℓ) =

{
(x, ℓ+ 1), if ℓ+ 1 < τ(x),

(f τ(x)(x), 0), if ℓ+ 1 = τ(x).
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Oj

grazing trajectory
miss trajectorytangent point

Figure 6: Discontinuities in the billiard map due to grazing.

Thus, under iteration of F , a point moves vertically up the tower until reaching the top, and
then jumps to the base according to the return dynamics.

The tower map F commutes with f :

π : ∆ → [0, 1], π(x, ℓ) = f ℓ(x), f ◦ π = π ◦ F.

3.1.2 Main steps for constructing a Young tower of the Sinai billiard

Compared to the previous ‘easy’ example, the Young tower construction for the Sinai billiard is much
more complicated due to the following reasons:

1. The base is two dimensional with a contracting and an expanding direction. More importantly,
returns to the partition elements are not onto the whole base, but onto entire strips in the
unstable direction (as it is usually the case with hyperbolic maps).

2. The billiard map has discontinuities, also called singularities, and they are caused by grazing
collision.

Grazing collision phenomena at φ = ±π
2 : there exist nearby trajectories with no collisions. In

other words, there exist parallel lines to the trajectory that just miss hitting a scatterer, see
Figure 6.

3. The height of the tower τ is not a first return time, but a ’good’ return time to a subset of the
phase space M . But, for the tower map, τ is the first return time to the base.

Hyperbolicity A map T :M →M is hyperbolic if there is a continuous, DT -invariant splitting of
the tangent bundle TM of the phase spaceM , into stable and unstable subspaces: TM =

⋃
xE

s
x⊕Eu

x ,
and there are λ ∈ (0, 1) and C,α > 0 such that

� DxT : Es
x → Es

Tx is onto for all x ∈M and

∥DxT
nv∥ ≤ Cλn for all v ∈ Es

x and n ∈ N.

� DxT
−1 : Eu

x → Eu
T−1x is onto for all x ∈M and

∥DxT
−nv∥ ≤ Cλn for all v ∈ Eu

x and n ∈ N.

� The subspaces Es
x and Eu

x vary continuously in x, and have mutual angles ∠(Es
x, E

u
x) ≥ α.

Here DT is the Jacobian matrix, which is the higher dimensional generalization of the derivative.
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x

W s(x)

W u(x)contraction expansion

Figure 7: The stable and unstable manifolds at intersect transversally at x.

Hyperbolicity implies the existence, at least locally, of stable and unstable manifolds (curves) in
the space M . The stable curve at x is

W s(x) = {y ∈M : d(Tnx, Tny)n→∞ → 0}.

The unstable curve at x is

W u(x) = {y ∈M : d(T−nx, T−ny)n→∞ → 0}.

W s(x),W u(x) give the contraction, respectively expansion (and in our setting, the contrac-
tion/expansion is exponential) and they intersect transversally at x, see Figure 7.

The tangent lines to W s(x),W u(x) at x in the tangent spaces TxM are Es(x), Eu(x).

Set of singularities, grazing collisions Recall the Sinai billiard map T :M →M , where

M = {(q, v) : q = position at the boundary of the scatterers, v = speed} = ∪j∂Oj ×
[
−π
2
,
π

2

]
Let S0 = {φ = ±π

2 } be the set of grazing collisions of T . Iteration of the dynamics gives

Sn =

{
∪n
i=0T

−i(S0), n ≥ 0

∪−n
i=0T

i(S0), n < 0.
.

Since Tn is not properly defined on Sn, E
s
x and W s(x) are not properly defined for x ∈ ∪n≥0Sn.

Also, W s(x) cannot intersect S0, which suggests that

Even if W s(x) is defined, it can be arbitrarily short.

This further suggests that work is required (and this is part of Pesin theory [43]) to ensure that

length(W s), length(W u(Tnx)) > 0.

It suffices to show that Tn(x) approaches S0 at a slower rate than the contraction in the stable
direction and T−n(x) approaches S0 at a slower rate than the expansion in the unstable direction.
To see the reason for this, start with a stable leaf W s(x) of fixed length. If you iterate this stable
leaf forward, it gets shorter exponentially fast:

length(W s(Tn)) ≤ C λn length(W s(x)).

13



If Tn(x) is close to S0 but not that exponentially close (i.e. larger than λn), then

length(W s(Tn)) < d(Tn(x) , S0)

and it will not be cut. If this holds for all n ≥ 1, W s(x) will never be cut.
Figure 8 below gives an explanation of singularity lines in the phase space in terms of grazing

collisions with some scatterers.

−π
2

+π
2

q ∈ ∂O0

S0

S0

S−1 for P

S−1 for P ′

S−1 for P ′′

••

•

• O0 P

P ′ P ′′

Figure 8: Points on S−1 refer to collisions on some scatterer, following a grazing collision at the previous
scatterer. The different curves S−1 correspond to different scatterers at this previous grazing collision.
Intersection points of S0 ∩ S−1 or of different pieces of S−1 refer to double grazing collisions.

Some details on the steps of the YT construction. For uniformly hyperbolic billiards
with singularities, such as Sinai billiard, one can try to find an induced map F = TR so that

1. it is uniformly hyperbolic

2. has long stable and unstable curves for every point in its domain.

Roughly, we say that points x in the base are ‘good’ if

� have long stable curves W s(x)

� when they return to the base, they have long unstable curves W u(TR(x))

3. has good distortion properties, that is good control of DFn(x)
DFn(y) , x, y in the same partition (at

time n) element.

Item 2 above is really tricky, because a dense set of points in M have arbitrarily short stable
and/or unstable manifolds. Their forward/backward orbit comes ‘too close and too soon’ to S0.

Young [48] and Chernov [10] induced to a set of points x ∈ M with long stable/unstable curves
that contain a Cantor set ∆0 of positive measure. We note that unlike in the previous 1D example,
the return time is not necessarily a first return. An impression of the base of a Young tower is
depicted in Figure 9 below.

Description of the Young tower

14



� The base of the tower is ∆0 and it is partitioned into at most countably many subsets ∆0,i, i ∈ N.

On each partition element ∆0,i, the return function R is constant: R|∆0,i = Ri.

Each ∆0,i maps hyperbolically into the base after an number Ri iterates of the billiard map T .

� One constructs the tower map T∆ is defined on whole tower ∆ =
⊔

i

⊔Ri−1
j=0 ∆ℓ,i (where, for

fixed i, ∆ℓ,i are copies of each other for 0 ≤ ℓ < Ri) as

T∆(x, ℓ) =

{
x ∈ ∆ℓ+1,i if 0 ≤ ℓ < Ri − 1;

TRi(x) ∈ ∆0 if ℓ = Ri − 1;

� The projection π : ∆ →M , π(∆) =M mod µ, defined by π(x ∈ ∆j,i) = T j(x), satisfies

π ◦ T∆ = T ◦ π.

� The return map T∆0 = T r : ∆0 → ∆0 where r(x) = ri if x ∈ ∆0,i, is countably piecewise
hyperbolic, it preserves a measure ν0 that is absolutely continuous w.r.t. Liouville measure µ.

On the base of the tower, the first return time σ : ∆0 → N satisfies σ(x) = r(π(x)) for

x ∈ ∆0. On the tower ∆, one speaks of the first return map F : ∆0 → ∆0, F (x) = T
σ(x)
∆ (x).

� By lifting ν0 up the tower ∆, one obtains a T∆-invariant measure:

µ∆(E) =
∑
n

ν0(F
−nE ∩ {r > n}).

Why a fat Cantor set? The details of the construction are too elaborate to discuss. They are
the hard core of the works [47] and [10]. But let us mention why it is a tick Cantor set.

The first thought one might have is that the base of the tower is a rectangle (previously, in the
easy example, we had an interval). But this cannot happen because one has to exclude the ‘non
good’ points. Recall that points x in the base are ‘good’ if

� have long stable curves W s(x)

� when they return to the base, they have long unstable curves W u(TR(x))

The non good points form a dense set because they contain all the singularity lines S±n. One
needs to exclude points that come too early and too close to S±n.

S+1 and S−1 have neighborhoods that have to be removed. The same holds for S+2 and S−2,
but these neighborhoods are already (proportionally) thinner than those for S+1 and S−1. This
continues the same way for all n > 2. By analogy with the middle third Cantor set, one sees that
we the base has to be a Cantor set: see figure 9 and caption.

Why positive Lebesgue measure? Just recall the construction of a fat Cantor set: see figure 10.
The Cantor set with positive Lebesgue measure is necessary. If it had zero measure then π(∆)

cannot be equal to M mod µ, which is part of the construction of the Young tower.
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φ = −π
2

φ = +π
2

q ∈ ∂O0

S0

S0

S−1

S−1

••

•

•

Figure 9: The base of the Young tower is a thick Cantor set (i.e., of positive Lebesgue measure) obtained
as the intersection of a thick Cantor sets of stable leaves (blue) and a a thick Cantor sets of unstable
leaves (red) inside the phase space. In the Young tower, strips in the stable direction form the partition
∆0,i of the base. When returning to the base, they map to strips in the unstable direction.

Reducing to a one-dimensional Young tower. Using that T∆ is hyperbolic one can reduce
to a a one dimensional Young tower by factorizing/collapsing the stable curves to points inside
unstable curves.

To avoid extra notation, we will still call it the one-dimensional tower (∆, T∆, µ∆). The base
map, that is the first return map of the of this one dimensional tower map, (∆0, F = T σ

∆, ν0) is
Gibbs-Markov.

The one-dimensional tower map T∆ can be made uniformly expanding after adjusting the metric.
Using

� exponential returns: ν0(r > n) ≤ Ce−na for some C, a > 0,

� hyperbolicity of T∆0 : ∆0 → ∆0,

one can a λ > 1 so that for the metric

d∆(x, y) =

{
λℓd(x, y) if x, y ∈ ∆ℓ,i for some ℓ, i;

∞ else

T∆ is uniformly expanding. Here d(x, y) is the Euclidean distance.

3.2 Role of transfer operators in the proof of LLT in [45]

While we recall the main steps in the proof of LLT in [45] using Fourier transforms or (perturbed
transfer operators), we will use the more detailed framework in [41] which also gives error terms in
LLT and mixing for the infinite horizon LG.
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p1 = 1/6

p2 = 1/5

p3 = 1/10

p3 = 1/9

Figure 10: The Cantor set is fat if the sum of proportions of holes
∑

k pk < ∞

3.2.1 Transfer operators for Gibbs-Markov maps and non-standard CLT and
LLT

To get the idea of the role of the transfer operator, let us first look at the easier case of Gibbs-Markov
maps. For Gibbs-Markov maps, Aaronson and Denker [3] obtained a local limit theorem for observ-
ables in the domain of attraction of a normal distribution that are not L2 wrt the invariant measure.
This type of observables have a behaviour that are similar to the displacement κ. The analysis comes
down to working with a perturbed version of the transfer operator. In the literature, this method
of using transfer operators for obtaining limit theorems (or local limit theorems) is referred to as
‘Nagaev-Guivarch-Aaronson and Denker’ method, see [24].

To simplify even further let us review

• I.I.D. set up Consider the sequence of i.i.d. random variables (Xj)j≥0 on (Ω,F ,P), Xj : Ω →
Zd, d = 1, 2 with E(Xj) = 0 and assume that

P(Xj = wN) =
cw
N3

+O

(
1

N4

)
as N → ∞, for all w ∈ Zd and for some cw > 0. (6)

Let us write w ∈ Zd as column vector. Assume further that
∑

w∈Zd cww · wT = A for some positive
symmetric matrix A, so Aij =

∑
w∈Zd cwwiwj .

This is the i.i.d. set up in which Xj plays the role of κ ◦ T j . The second term is necessary in
order to obtain LLT with error terms.

The Fourier transform or characteristic function of Xj is

ψ(t) = E(eit·Xj ) for the Xj with t ∈ Rd.

where t ∈ Rd and Xj both written as column vectors, and t ·Xj denotes the scalar product of these
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vectors. A calculation using (6) gives the behaviour of ψ(t) as t→ 0:

1− ψ(t) = 1 + it · E(Xj)−
∑
w∈Zd

∞∑
N=1

eit·wNP(Xj = wN)

=
∑
w∈Zd

∑
N<1/|t|

(1 + it · wN − eit·wN )P(Xj = wN) +O(t2)

=
∑
w∈Zd

∑
N<1/|t|

(1 + it · wN − eit·wN )

(
cw
N3

+O

(
1

N4

))
+O(t2)

= log(1/|t|)

( ∑
w∈Zd

cww · wT
)
t

 · t+O(t2) = log(1/|t|)At · t+O(t2).

where t2 = t · t = ∥t∥2 =
∑d

k=1 t
2
k. In short, as t→ 0,

1− ψ(t) = log(1/|t|)At · t+O(t2) and thus, ψ(t) = exp

(
− log(1/|t|)At · t

2
+O(t2)

)
. (7)

Write Sn =
∑n−1

j=0 Xj . Due to independence,

E(eit·Sn) = ψ(t)n = exp

(
n

(
−At

2 log(1/|t|
2

+O(t2)

))
as t→ 0.

• Non-standard CLT. Replacing t with t√
n logn

→ 0, as n→ ∞,

E(eit·
Sn√
n logn ) → e−

At·t
2 as n→ ∞, for any t ∈ Rd.

Since e−
At2

2 is the characteristic function of a Gaussian random variable N (0, A), the Levy continuity
theorem implies that

Sn√
n log n

→d Ņ(0, A) as n→ ∞. (8)

• LLT. Let N ∈ Zd be a column vector. Start with the Fourier inversion formula

P(Sn = N) =
1

(2π)d

∫
[−π,π]d

e−it·Nψ(t)n dt.

(In fact, looking at ψ(t)n as a Fourier series, one can think of P(Sn = N) as the N -th Fourier
coefficient)

One property of ψ(t)n in the i.i.d. set up is that for t ∈ R2, outside a neighborhood of 0 ∈ Rd,

|ψ(t)n| ≤ εn0 , for some ε0 ∈ (0, 1).

Thus, there exists δ > 0 so that

P(Sn = N) =
1

(2π)d

∫
[−δ,δ]d

e−it·Nψ(t)n dt+O(εn0 ).
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A change of variables t → t√
n logn

together with some elementary but not necessarily short calcula-

tions (see the chain of equations around [41, Formulas (98) and (99)]) gives that for any N ∈ Zd,

P(Sn = N) =
Φ(N)

(n log n)d/2
+O

(
1

(n log n)d/2 log n

)
, (9)

where Φ is the density of the random variable distributed according to N (0, A).

The message of the i.i.d. set up is that once you have the asymptotics of the characteristic
function (7), non-standard CLT (8) and LLT (with rates) (9) are typical consequences.

In a non-independent set up, one has to ‘work hard’ to get something similar to (7). ‘How hard’
depends on the set up. As we shall see below, for Gibbs-Markov maps the work is not very hard.
For Sinai billiards, we have a completely different story.

Gibbs-Markov maps along with transfer operator on a suitable Banach space.
Let (Y, µY ) be a probability space, with a non-trivial countable partition {a}. Let TY : Y → Y
be a topologically mixing ergodic measure-preserving transformation, piecewise continuous w.r.t.
{a}. Define the separation time s(y, y′) to be the least integer n ≥ 0 such that Tny and Tny′ lie
in distinct partition elements. Assuming that s(y, y′) = ∞ if and only if y = y′ one obtains that
dθ(y, y

′) = θs(y,y
′) for θ ∈ (0, 1) is a metric.

Let φ = dµY
dµY ◦TY

: Y → R. We say that T is a Gibbs-Markov map if the following hold w.r.t. the
countable partition {a}:

� TY |a : a → T (a) is a measurable bijection for each a such that T (a) is the union of elements
{a} modµY ;

� infa µY (T (a)) > 0 (the big image property);

� There are constants C > 0, θ ∈ (0, 1) such that

| logφ(ya)− logφ(y′a)| ≤ C dθ(ya, y
′
a)for all ya, y

′
a ∈ a and for all a ∈ {a}. (10)

See, for instance, [1, Chapter 4] and [2] for background on Gibbs-Markov maps.
Given an observable v : Y → R, let

Dav = sup
y,y′∈a, y ̸=y′

|v(y)− v(y′)|/dθ(y, y′), |v|θ = sup
a∈{a}

Dav.

The space Bθ ⊂ L∞(µY ) consisting of the observables v : Y → R such that |v|θ < ∞ with norm
∥v∥Bθ

= |v|∞+ |v|θ <∞ is a Banach space. The transfer operator R : L1(µY ) → L1(µY ), defined by∫
Y
Rnvw dµY =

∫
Y
vw ◦ Tn

Y dµY , n ≥ 1, v ∈ L1(µY ), w ∈ L∞(µY )

has a spectral gap in the Banach space Bθ ⊂ L∞(µY ) (see, [1, Chapter 4]). In particular, this means
that the spectral radius is 1 and 1 is also a simple eigenvalue, isolated in the spectrum of R.

A consequence of the spectral gap is that for v ∈ Bθ (again, see, [1, Chapter 4] for details),

Rnv =

∫
Y
vdµY +Qnv, where ∥Qn∥Bθ

≤ δn0 , for some δ0 ∈ (0, 1). (11)

It is known that this further allows one to obtain exponential decay of correlation for ‘good’ functions.
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Using a perturbed version of R to obtain CLT and LLT for

gn =

n−1∑
j=0

g ◦ T j
Y with g : Y → Zd, g|a = Ca where Ca is constant depending on a,

µY (g = wN) =
cw
N3

+O

(
1

N4

)
as N → ∞, for some cw > 0 and w ∈ Zd. (12)

Similar to the iid, we assume further that∑
w∈Zd

cww · wT = A for some positive symmetric matrix A. (13)

So Aij =
∑

w∈Zd cwwiwj .
Much more relaxed assumptions on g are considered in [3], but here we are only interested in the

‘displacement κ scenario’. The Fourier transform of gn =
∑n−1

j=0 g ◦ T j is

EµY (e
it·gn) =

∫
Y
eit·gn1 dµY .

For v ∈ Bθ, define the twisted transfer operator

Rtv = R(eit·gv), t ∈ Rd.

Note that R0 ≡ R.
A calculation (see, for instance, [24, Lemma 3.2]) shows that

∫
Y e

itgnv w◦TndµY =
∫
Y R

n
t v w dµY .

Taking v = w = 1, we get

EµY (e
it·gn) =

∫
Y
Rn

t 1dµY .

This is the analogue of ψ(t)n in the i.i.d. set up. To obtain LLT one starts from (after using the
Fourier inversion formula)

µY (gn = N) =
1

(2π)d

∫
[−π,π]d

e−it·N
(∫

Y
Rn

t 1dµY

)
dt.

Recalling the ‘message’ in the i.i.d. set up, we need to

Understand the asymptotic behaviour of Rn
t as t→ 0

Unlike in the iid set up, for the proof of LLT, one needs to justify that the analysis can be reduced
to a neighborhood of 0 ∈ Rd. (see text around equation (16) below).

Similar ingredients used to obtain (11) (see [2] and also the survey [24]) allows one to write

There exists δ > 0 so that for all t ∈ Bδ(0) and for all v ∈ Bθ,

Rn
t v = λnt Πtv +Qn

t v, where ∥Qn
t ∥Bθ

≤ δn0 , for some δ0 ∈ (0, 1), (14)

where

(λt)t∈Bδ1
(0) is a family of eigenvalues with λ0 = 1

(Πt)t∈Bδ1
(0) is a family of eigenprojections (operators on Bθ ) with Π0v =

∫
Y
v dµY . (15)
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For the LLT one also needs to justify that the analysis can be reduced to a neighborhood of
0 ∈ Rd. We will not go into this rather technical detail, but just mention that a consequence of the
so-called aperiodicity condition is that, given δ as in (14),

∥Rn
t ∥Bθ

≤ εn0 for some ε0 ∈ (0, 1) and for all t /∈ Bδ(0). (16)

For the details on the aperiodicity condition we refer to [2, Definition 3.1]. For the purpose of LLT
we will simply assume that (16) holds.

Continuity of the family of operators (Rt)t∈Rd.
Given that g ∈ L1(µY ) (a consequence of (12)) and that Bθ ⊂ L∞(µY ), there is an easy proof of

a useful continuity estimate in t for Rt. For more details on continuity estimates for the family of
operators (Rt)t∈Rd we refer to [2, 3].

Lemma 3.3 Assume (12). Then ∥Rt −R∥Bθ
≤ C|t| ∥g∥L1(µY ), for some C > 0.

Proof.(Sketch) Here we work with an equivalent formula for R, namely the pointwise definition of
the transfer operator. Recall φ = dµY

dµY ◦TY
: Y → R. Then we can write

Rv(y) =
∑

x∈T−1
Y y

φ(x)v(x) =
∑
a∈{a}

φ(ya)v(ya),

where ya ∈ a∩T−1
Y y. The first identity relies on a change of variables: see, for instance, the example

in [24, Section 3].
Similarly, Rtv(y) =

∑
a∈{a} φ(ya)e

it·g(ya)v(ya). One property of φ is that

φ(ya) ≤ Cµ(a) for some C > 0 and for all ya ∈ a and for all a ∈ {a}. (17)

Recalling that g|a = Ca, where Ca is a constant depending on a,

|Rt −R|∞ ≤ |v|∞
∑
a∈{a}

φ(ya)
∣∣∣eit·g(ya) − 1

∣∣∣ ≤ |v|∞ |t|
∑
a∈{a}

φ(ya)Ca

≤ |v|∞ |t|
∑
a∈{a}

µ(a)Ca = |v|∞∥g∥L1(µY ) |t|.

where in the last inequality we have used (17).
Regarding the | |θ seminorm, we note that for every a ∈ {a}, |eit·g|a|θ = 0 since g is constant on

partition elements. Hence,

|Rt −R|θ ≤ |v|∞
∑

a∈{a},ya,y′a∈a

|φ(ya)− φ(y′a)|
∣∣∣eit·g(ya) − 1

∣∣∣
+

∑
a∈{a},ya,y′a∈a

φ(ya)|v(ya)− v(y′a)|
∣∣∣eit·g(ya) − 1

∣∣∣ .
Using (10) and (17), we can bound the first term in the equation above by |v|∞ (up to a multi-
plicative constant independent of a). The second term is bounded (up to a multiplicative constant
independent of a) by |t| |v|θ due to definition of |v|θ and (17). □

An immediate consequence of Lemma 3.3 is

|λt − λ0| ≤ C0|t|, ∥Πt −Π∥Bθ
≤ C1|t|, (18)
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for constants C0, C1 > 0 and for all t ∈ Bδ1(0).
Combining (15), the continuity estimate for Πt in (18) and formula (14) for Rn

t , we arrive at

Rn
t v = λnt Πtv +O(δn1 ) = λnt Πtv +O (|t| |λnt |) +O(δn1 )

= λnt

∫
Y
v dµY +O (|t| |λnt |) +O(δn1 ). (19)

Recall that
∫
Y R

n
t 1 dµY is the analogue of ψ(t)n in the i.i.d. set up. Following the message from

the i.i.d. set up, that is that we want to prove that for t small,

The asymptotic behavior of

∫
Y
Rn

t 1 dµY is of the form expn

(
− log(1/|t|)At · t

2
+O(t2)

)
,

for A a matrix as in (13).
A look at (19) tells us that if we can show that

λnt is of the form expn

(
− log(1/|t|)At · t

2
+O(t2)

)
we are done. Since Bθ ⊂ L∞(µY ) in the situation of Gibbs-Markov maps, this is not hard.

The basic idea is that at the ‘level of the eigenvalue’, we can decompose λt into

� the Fourier transform of an i.i.d. process

� an error term that we can control.

Let vt = Πt1∫
Y Πt1 dµY

be the normalized eigenvector, that is
∫
Y vt dµY = 1, associated with λt.

Write v0 = 1. Starting with Rtvt = λtvt and integrating,

λt =

∫
Y
Rtvt dµY =

∫
Y
Rt1 dµY +

∫
Y
(Rt −R)(vt − 1) dµY

=

∫
Y
eit·g1 dµY +

∫
Y
(Rt −R)(vt − 1) dµY . (20)

The first term in (20) : see the calculation leading to (7):

1−
∫
Y
eit·g1 dµY = log(1/|t|)At · t+O(t2)

with the matrix A is as in (13).

The remaining term
∫
Y (Rt −R)(vt − 1) dµY is easy to control. By (18), ∥Πt −Π∥Bθ

= O(|t|).
This implies that ∥vt − 1∥Bθ

= O(|t|). By Lemma 3.3, ∥Rt − R∥Bθ
= O(|t|). Crucially using that

Bθ ⊂ L∞(µY ), ∣∣∣∣∫
Y
(Rt −R)(vt − 1) dµY

∣∣∣∣ = O(|t|2).

As a consequence,

1− λt = log(1/|t|)At · t+O(t2) and thus, λnt = expn

(
− log(1/|t|)At · t

2
+O(t2)

)
,

as desired. From here onward, the proof of non-standard CLT goes exactly as in the i.i.d. setup.
The same applies to LLT under assumption (16).
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3.2.2 Family of transfer operator on the Young tower of the Sinai billiard maps.
Non-standard CLT and LLT

Recall from Subsection 3.1.2 that the Young tower for the Sinai billiard map can be reduced to the
one dimensional tower (∆, T∆, µ∆). Recall that σ is the first return of the tower map T∆ to the
base ∆0 and that F = T σ

∆ is the first return map.
The base map (∆0, F, ν0) is Gibbs-Markov. While one cannot obtain the desired limit laws solely

by working with the base map F , one can take advantage of the Gibbs-Markov structure by

Relating quantities on the tower to quantities on the base.

In particular, one relates perturbed transfer operators along with eigenfamilies with the ones on the base.

The relevant work to the problem treated here is [6].

Transfer operator for the tower map (∆, T∆, µ∆)
The main difference from the easier set of Gibbs-Markov maps is that the transfer operator

P : L1(µ∆) → L1(µ∆), defined by∫
Y
Pnvw dµ∆ =

∫
Y
vw ◦ Tn

∆ dµ∆, n ≥ 1, v ∈ L1(µ∆), w ∈ L∞(µ∆)

has a spectral gap in a Banach space B∆ ⊂ Lp(µ∆) for some p > 1. This was established in [45]
based on the works [48, 10]. We do not provide the details on the Banach space here, but refer
to [45], see also [6] or [41, Section 5.1].

Let ∥ · ∥B∆
be the norm on B∆. The spectral gap of P on B∆, allows one to write

Pnv =

∫
∆
vdµ∆ +Qnv, where ∥Qn∥B∆

≤ δn0 , for some δ0 ∈ (0, 1). (21)

Perturbed version of the transfer operator by the version of κ on ∆.
Let κ̂ : ∆ → Zd be the version of κ on ∆. Such a version of κ on ∆ exists because κ is constant

on stable curves. So, collapsing stable/unstable curves does not create a problem in reducing to the
one dimensional tower (see, for instance, [41, Section 3]). For any N ∈ Zd,

µ(κn = N) = µ∆(κ̂n = N), κ̂n =

n−1∑
j=0

κ̂ ◦ T j
∆.

Define the perturbed operator Ptv = P (eit·κ̂v), t ∈ Rd. As in the Gibbs-Markov case discussed
previously, for the LLT, one needs to look at

µ∆(κ̂n = N) =
1

(2π)d

∫
[−π,π]d

e−itN

(∫
∆
Pn
t 1dµ∆

)
dt. (22)

By argument similar to those used for obtaining (21),

There exists δ > 0 so that for all t ∈ Bδ(0) and for all v ∈ B∆,

Pn
t v = λnt Πtv +Qn

t v, where ∥Qn
t ∥Bθ

≤ δn0 , for some δ0 ∈ (0, 1) (23)
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where

(λt)t∈Bδ1
(0) is a family of eigenvalues with λ0 = 1

(Πt)t∈Bδ1
(0) is a family of eigenprojections (operators on B∆ ) with Π0v =

∫
Y
v dµY .

As established in [44] for the finite horizon case, κ̂ is aperiodic. The same proof carries over to the
infinite horizon case, as noted in [45]. Given δ as in (23),

∥Pn
t ∥B∆

≤ εn0 for some ε0 ∈ (0, 1) and for all t /∈ Bδ(0). (24)

So far everything is similar to the easier set up of Gibbs-Markov maps, meaning that we can
reduce the calculation to t ∈ Bδ(0). There is one crucial difference: B∆ ̸⊂ L∞(µ∆).

As in the Gibbs-Markov set up, we write

1− λt =

∫
Y
(1− eit·κ̂)1 dµ∆ −

∫
∆
(Pt − P )(vt − 1) dµ∆. (25)

As before, plays the role of the Fourier transform of an i.i.d. process and it can be estimated as in the
i.i.d. set up. As established in [45, Proposition 6], there exists a finite set S = {(L,w) ∈ (Zd,Zd) :
gcd(wi, wj) = 1 for all 1 ≤ i < j ≤ d} which parametrizes the set of corridors so that

µ(κ̂ = L+Nw) = cL,wN
−3(1 + o(1)), with cL,w > 0. (26)

It can be extracted from [45] that∫
Y
(1− eit·κ̂)1 dµ∆ = log(1/|t|)

( ∑
(L,w)∈S

cL,ww · wT
)
t

 t (1 + o(1))

= log(1/|t|) Σt · t (1 + o(1)),

for a d× d matrix Σ with detΣ ̸= 0. If d = 1, then Σ is a scalar.

Showing that
∣∣∫

∆(Pt − P )(vt − 1) dµ∆
∣∣ is o(t2 log(1/|t|) ) is seriously more complicated than in

the Gibbs-Markov case. It is not hard to control ∥vt − 1∥Lq for some q < p, but this fact cannot be
used directly. It helps to develop an intuition and it can be used in several much more complicated
estimates.

The fact that
∣∣∫

∆(Pt − P )(vt − 1) dµ∆
∣∣ = o(t2 log(1/|t|) ) was established in [45] using:

� an abstract result on the tower ∆, namely [6, Theorem 3.5].

We do not recall the details of [6, Theorem 3.5], but mention that the verification of the conditions
of the abstract result [6, Theorem 3.5] is not at all trivial. In the reminder of the section we review
briefly the estimate of λt with an error term, which gives LLT and mixing with rates.

The verification of the conditions of the abstract result [6, Theorem 3.5] relies on the of the so
called ‘double probability’, among other ingredients. Namely, as established in [45, Propositions
11–12] and [45, Lemma 16], there exists ε > 0 such that, for every V ,

µ∆ (An,V ) = O(n−3−ε) with An,V :=
{
κ̂ = n, ∃|j| ≤ V log(n+ 2), |κ̂ ◦ f j | > n4/5

}
(27)

In words, the joint probability of the event κ̂ = n and the event that κ̂ is almost equally large
within approximately log n iterates (that is, |j| ≤ V log(n + 2), |κ̂ ◦ f j | > n4/5) is smaller than the
probability of the single event κ̂ = n. This is sufficient to gain a factor n−ε for some fixed ε > 0.

Putting together the estimates for
∫
Y (1 − eit·κ̂)1 dµ∆ and

∣∣∫
∆(Pt − P )(vt − 1) dµ∆

∣∣ and recall-
ing (25), one obtains 1− λt = log(1/|t|) Σt · t (1 + o(1)), which is all that is needed to obtain LLT.
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Error rates in LLT as in [41]. In the reminder of this section, we provide the details for
the use of (27) for obtaining error rates in the LLT as [41]. Recalling the i.i.d. set up and the
Gibbs-Markov scenario, we need to establish that

1− λt = log(1/|t|) Σt · t +O(t2).

Recalling (25) we need to show that

(a)
∫
Y (1− eit·κ̂)1 dµ∆ = log(1/|t|) Σt · t +O(t2);

(b)
∣∣∫

∆(Pt − P )(vt − 1) dµ∆
∣∣ = ∣∣∫

∆(e
itκ̂ − 1)(vt − 1) dµ∆

∣∣ = O(t2).

Showing (a). This part is the easy part. With the same notation, [41, Lemma 4.2] shows that
with the same notation as in (26),

µ(κ̂ = L+Nw) = cL,wN
−3 +O(N−4), with cL,w > 0.

Given this expnasion of the tail, item (a) follows essentially as in the computation in the i.i.d. set
up treated above.

Showing (b). This is not at all trivial. Improving by just O(t2) turns out to be quite challenging.
Recall that vt =

Πt1∫
∆ Πt1 dµ∆

. Write

V (t) =

∫
∆
(eitκ̂ − 1)(vt − 1) dµ∆.

It is easy to see that µ∆((Rt − R0)(1∆)) = O(t). However, showing that the same holds for
Πt is an entirely different story. Building on [6, Section 3], [41, Proposition 5.3] implies that
µ∆((Πt − Π0)(1∆)) = O(t). In particular, to obtain this result, the authors ‘made sense’ of a
derivative at 0 for Πt. (In order to obtain error terms in LLT and mixing, [41, Proposition 5.3]
obtains higher order terms in ∥Πt −Π0∥Lq = O(|t|) for a range of q ∈ [1, 2).)

As mentioned already, an important part of the strategy in [6] is to relate quantities on the tower
with quantities on the base. We start from the same expression Πt.

Let π0 : ∆ → ∆0 be the vertical projection from ∆ to the base ∆0 defined by π0(x, ℓ) = (x, 0).

Let ω : ∆ → N be the level map defined by ω(x, ℓ) = ℓ. Thus x = T
ω(x)
∆ (π0(x)) for all x ∈ ∆.

Πtv(x) = λ
−ω(x)
t P

ω(x)
t (Πtv)(x) = λ

−ω(x)
t eit·κ̂ω(x)(π0(x))Πt(v) ◦ π0(x) . (28)

The first equality in (28) is a consequence of P
ω(x)
t Πtv(x) = λ

ω(x)
t Πtv(x).

Using that µ∆((Πt −Π0)(1∆)) = O(t), one obtains that

V (t) =

∫
∆
(1− eit·κ̂)(Πt −Π0)(1∆) dµ∆ +O(t2). (29)

Below, we summarize the steps of [41, Proof of Lemma 6.1] in order to highlight the use of the
‘double probability’ (27). The formula (28) is heavily used.

From (29), and (28) we get∣∣∣∣∫
∆
(1− eit·κ̂)(Πt −Π0)(1∆) dµ∆

∣∣∣∣ ≤ J1(t) + J2(t) + J3(t) , (30)
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where

J1(t) :=

∣∣∣∣∫
∆
(1− eit·κ̂(x))(eit·κ̂ω(x)(π0(x)) − 1) dµ∆(x)

∣∣∣∣ ,
J2(t) :=

∫
∆

∣∣∣(1− eit·κ̂(x))eitκ̂ω(x)(Πt −Π0)(1∆)
∣∣∣ ◦ π0(x) dµ∆(x) ,

J3(t) :=

∫
∆

∣∣∣(1− eit·κ̂(x))(λ
−ω(x)
t − 1)eitκω(x)Πt(1∆)

∣∣∣ ◦ π0(x) dµ∆(x) .
The terms J2, J3 are shown to be O(t2), see [41, Proof of Lemma 6.1] (which are building blocks

in obtaining the previously mentioned [41, Proposition 5.3]). This is based on several additional
estimates, which requires an understanding of the derivative of Πt(v) ◦ π0(x) in t, evaluated at 0.

Here we just look at J1, which can be handled via the ‘double probability’ (27), and also expo-
nential tail of µ∆(σ > m). Note that

J1(t) =

∣∣∣∣∣
∫
∆0

σ−1∑
k=0

(1− eit·κ̂◦T
k
∆)(1− eit·κ̂k) dµ∆

∣∣∣∣∣ ≤ t2
∫
∆0

σ−1∑
k=1

|κ̂ ◦ T k
∆| |κ̂k| dµ∆

Thus, it remains to show that

∫
∆0

σ−1∑
k=1

|κ̂ ◦ T k
∆| |κ̂k| dµ∆ is bounded. (31)

Proof. (of equation (31))
For any y ∈ Y , we write ℓ(y) for the largest integer in {1, ..., σ(y)− 1} such that

N(y) := sup
k=1,...,σ(y)−1

|κ̂ ◦ T k
∆(y)| = |κ̂ ◦ T ℓ(y)

∆ (y)| .

Set
Yn := ∆0 ∩ {κ̂ ◦ T ℓ(y)

∆ = n},

Y ′
n := {y ∈ Yn : σ(y) < b log(n+ 2)} ,

and
Y (0)
n :=

{
y ∈ Y ′

n : ∀j < σ(y), |κ̂ ◦ f j | ≤ n4/5
}
.

Notice that∫
Y

σ−1∑
k=1

|κ̂ ◦ fk| |κ̂k| dµ∆ ≤
∑
n≥0

∫
Y ′
n

b log(n+2)−1∑
k=1

|κ̂ ◦ fk| |κ̂k| dµ∆ +
∑
n≥0

∫
Yn\Y ′

n

n2σ dµ∆

≤
∑
n≥0

∫
Y

(0)
n

b n9/5 log(n+ 2) +
∑
n≥0

∫
Y ′
n\Y

(0)
n

n2b log(n+ 2) dµ∆ +
∑
n≥0

n2Eµ∆ [σ1Y \Y ′
n
]

≤
∑
n≥0

b n9/5 log(n+ 2)µ∆(Y
′
n) +

∑
n≥0

n2b log(n+ 2)µ∆(Y
′
n \ Y (0)

n )

+
∑
n≥0

n2
∑

m≥b log(n+2)

µ∆(σ > m) .
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It is known that µ∆(σ > m) ≤ Cθm1 for θ1 ∈ (0, 1). The last term of this displayed equation is less
than ∑

n≥0

n2
∑

m≥b log(n+2)

C1θ
m
1 ≤

∑
n≥0

O(n2θ
b log(n+2)
1 ) <∞

for b large enough. By the asymptotic of (26), the other terms are dominated by

∑
n≥0

O

n9/5 log(n+ 2)

b log(n+2)∑
m=0

µ∆(κ̂ = m)

+
∑
n≥0

n2 log(n+ 2)

b log(n+2)∑
m=0

µ∆(An,b)

≤
∑
n≥0

O
(
n9/5−3(log(n+ 2))2

)
+

∑
n≥0

n2−3−ε(log(n+ 2))2 <∞,

where An,b is from (27). □

Mixing and mixing LLT for ‘suitable’ class of functions The method of perturbed
transfer operators (as before this is the Nagaev-Guivarch-Aaronson-Denker’ method), allows one to
work with a ‘suitable’ class of observables.

Instead of working with v = w = 1 as in (22) we can write for v ∈ L1(µ∆) and w ∈ L∞(µ∆):

∫
∆
v1κ̂n=Nw ◦ Tn

∆ dµ∆ =
1

(2π)d

∫
[−π,π]d

e−itM

(∫
∆
Pn
t vw ◦ Tn

∆ dµ∆

)
dt. (32)

Provided that v ∈ B∆ one would proceed as before by exploiting (23) and the approach previously
described.

A statement of the form (32) is called a Mixing Local Limit Theorem (MLLT). But the meaningful
question is

What are suitable observables v, w in the setting of LG?

This question was answered for the finite and also infinite horizon by Pène in [38], see also [40, Section
3] for a summary of the main results and additional challenges. For a suitable class of observables,
when treating error terms in MLLT we refer to [41].

Recalling what we summarized in Subsection 2, MLLT translate or lead (again, depending on
the class of observables) to Mixing for the LG.

4 Mixing and Mixing Local Limit Theorem (MLLT) for

the periodic LG flows (continuous time)

4.1 Describing the continuous time LG

Recall Figures 1 and 3 for the tubular LG finite or infinite horizon and also Figure 4 for the two-
dimensional LG.

The dynamics is the same but this time we look at it in continuous time. As such, the quantity
that we previously ignored, namely the flight time τ : M → R+ which gives the time between
consecutive collisions, will play an essential role.
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Consider Figure 11 describing LG flow via a suspension flow. In the flow case, instead of looking
at the extension of the discrete dynamics, the discrete time Sinai billiard T :M →M , we look at a
suspension over it. We will refer to this object as the Sinai billiard flow and we will denote this
by ϕt. The Poincaré map of ϕt is the Sinai billiard map (T,M, µ) described in the previous sections.
Recall from Subsection 3.2.2 that points x ∈ M are x = (q, v), where q is the position (on the
boundary of scatterers) and v is the unit velocity vector parametrized by the angle φ ∈ [−π/2, π/2].

Recalling the meaning of the flight time τ ,

T = ϕτ and M̂ = {(x, u) : 0 ≤ u ≤ τ(x)}/ ∼ with (x, τ(x)) ∼ (T (x), 0).

The flow ϕt preserves the probability measure ν = (µ× Leb)/τ̄ where τ̄ =
∫
M τ dµ.

In this notation, we have the following identification

T (x) = (ϕτ )(x) = ϕτ(x)(x) .

We set τn :=
∑n−1

j=0 τ ◦ T j , with the usual convention τ0 := 0.
For any x = (q, v) ∈ M , we set Nt(x) ∈ N0 for the collisions number in the time interval (0, t]

starting from x. For x ∈M , this quantity satisfies

τNt(x)(x) ≤ t < τNt(x)+1(x) .

Furthermore, Nt(ϕu(x)) = Nt+u(x) for all x ∈ M and all u ∈ [0, τ(x)) and any t ∈ [0,+∞). With

these notations, the Sinai billiard flow (M̂, (ϕt)t, ν) can be represented as

ϕt : M̂ → M̂, ϕt(x, u) = (TNt+u(x)(x), t+ u− τNt+u(x)(x)).

LG flow as a Zd-extension by κ : M → Zd The blue arrows in Figure 11 show the transition
from cell to cell, where the dynamics on the cell is given by the Sinai billiard flow ϕt : M̂ → M̂ .

A useful representation of the LG flow is one that similar to the LG map. This time, we write
M̃ = M̂ × Zd and define

Φt(x, u, ℓ) = (TNx, ℓ+ κN (x), u+ t− τN (x)) for N = Nt(x, u) with τN (x) ≤ t < τN+1(x).

The flow Φt preserves the infinite measure ν̃ = ν × LebZd .

4.2 Mixing for the Lorentz gas flow Φt seen as a suspension flow
via MLLT for κ

The meaning of finite horizon for the map/discrete time was clarified in Subsection 3.2.2. We said
that this means that κ is bounded. In the finite horizon case, the flight time is also bounded.

The meaning of infinite horizon for the map/discrete time was also clarified in Subsection 3.2.2
and as mentioned there κ ̸∈ L2(µ). In the flow scenario, τ has the same tail as κ.

In Section 2, we mentioned that all limit laws obtained for κ translate into limit laws for the
flight function V :M → Rd that gives the distance in Rd between collisions. Recall that

V (x) = κ(x) +H(x)−H(Tx),

where H − H ◦ T is referred to as a bounded (mean zero) coboundary. Clearly, µ(|κ| > N) and
µ(|V | > N) have the same asymptotics.
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A

B

Figure 11: Lorentz gas flow via suspension flow.

For the planar Lorentz gas (d = 2), we can write

|V | = τ, and thus µ(τ > N) = µ(|V | > N).

For the Lorentz tube (d = 1), the flight time τ can be very different from the modulus ∥κ∥ of
the displacement function. Indeed, a flow-line can wrap many times around the circle direction of
R × S1 (making τ large), while staying in the same cell (so κ = 0). Nonetheless, the same type of
tail for τ holds. We refer to [42].

Set

an =

{
nd/2, in the finite horizon case,

(n log n)d/2 in the infinite horizon case,
(33)

and recall that

κn
an

→d N (0,Σ) (34)

To state MLLT for both finite and infinite horizons, we consider the following class of measurable
sets.

Definition 4.1 Let F be the class of measurable subsets A of M̂ of the form A = ϕI(A0) =

{ϕu(x), x ∈ A0, u ∈ I} that are represented in M̂ by A0 × I ⊂ M̂ (implying that I ⊂ [0, infA0 τ)),
with A0 ⊂M a measurable set satisfying µ(∂A0) = 0 and with I a bounded interval.

Theorem 4.2 Let A,B ∈ F with F as in Def. 4.1 . Let at as defined in (33). Let K be a bounded
subset of Rd, let w ∈ Rd and wt ∈ Rd be such that limt→+∞wt/at = w. Then

adt ν (A ∩ {ϕt ∈ B, κNt ∈ wt +K}) ∼ Ψ(w) ν(A)ν(B)#((K + wt) ∩ Zd) ,

where Ψ is the density of the Gaussian limit in (34).
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In both the finite and infinite horizon case, the results are recent. In the finite horizon case, Theo-
rem 4.2 was proved by Dolgopyat and Nándori [19] and complete expansions (error rates up to any
order) were obtained by Dolgopyat, Nańdori and Pène in [20]. In the infinite horizon, Theorem 4.2
was proved by Pène and Terhesiu in [42].

Theorem 4.2 implies mixing the Lorentz gas flow ϕ̃t

for compactly supported observables in the ’extended suspension’

In the infinite horizon, a main challenge was to consider observables NOT compactly supported
observables in the ’extended suspension’. The essential feature of this very natural class of observables
is that

The support of these observables may contain points with infinite flights.

There is no analogue of this in the finite horizon case.
We recall the statement of [42, Theorem 1.1] as to get the idea across.
Write D2 := R2 (for d = 2) or on the tube D1 := R × S1 (for d = 1), and let Ωd be the set of

positions in Dd that are not inside an obstacle. In the statement below, we look at the Lorentz gas
flow (Φt)t not via its representation as Zd extension of the suspension flow, but directly on the billiard

manifold. The flow Φt maps a point (q, v) ∈ M̃ (corresponding to a couple position and velocity at

time 0) to a point Φt(q, v) = (qt, vt) ∈ M̃ corresponding to the couple position and velocity at time
t.

Theorem 4.3 [42, Theorem 1.1] For all continuous compactly supported observables f, g : Ωd ×
S1 → R, ∫

M̃
f.g ◦ Φt dν̃ ∼

∫
M̃
f dν̃

∫
M̃
g dν̃

(2πt log t det(Σ))
d
2

, as t→ +∞ .

If f is a compactly supported observable on the billiard phase space Ωd× S1, then its lift f ◦ π̂−1

to a suspension flow need not be compactly supported. Here π̂(x, u) = ϕu(x) is the projection from
the suspension flow to the billiard flow space.

There are two mechanisms that enable the non-compactness of π̂−1(supp(f)).

� The return to the Poincaré section is not a first but rather a “good” return. Then a flow-line
can intersect supp(f) any number of times, say R, before a “good” return happens. Thus,
π̂−1(supp(f)) might contain (as many) R uniformly separated components.

� Even if the billiard manifold is compact, it can still allow infinite horizon. For example the
Sinai billiard on a torus with a single round scatterer has this property.

A flow-line can wrap any number of times (say R) around the torus (and intersecting supp(f))
before hitting the scatterer. In this case, π̂−1(supp(f)) might contain R uniformly separated
components, too.

For an impression of the of observables considered in [42, Theorem 1.1], consider Figure 11: a
function supported on B is compactly supported, while a function supported on A is not compactly
supported in the extended suspension.

We state a light version of the mixing result along with a short proof.
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Corollary 4.4 (of Theorem 4.2) Let n ∈ N and set

E±n :=

{
Φ±u(q + ℓ, v⃗) ∈ M̃ : q ∈

I⋃
i=1

∂Oi, u ∈ [0, n], ℓ ∈ Zd, |ℓ| ≤ |n|

}
.

Then, for all observables f, g : M̃ → R that are continuous µ-a.e. and supported respectively in E−n

and in En, we have

(at)
d

∫
M̃
f.g ◦ Φt dν̃ ∼

∫
M̃
f dν̃

∫
M̃
g dν̃Ψ(0), (35)

as t→ +∞.

Proof. Let A0 × I,B0 × I be two sets belonging to F defined in Defintion 4.1.
Let A,B be two sets of the form A0 × I × {ℓ0} and B0 × J × {ℓ′0} in M̂ × Zd. We observe that

ν̃ (A ∩ Φ−t(B)) = ν(ϕI(A0) ∩ {ϕt ∈ ϕJ(B0), κNt = ℓ′0 − ℓ0}) .

Consider the set up of Theorem 4.2 with

wt = ℓ ∈ Zd, w = 0, K = {0}.

Then

∀ℓ ∈ Zd, (at)
dν (A ∩ {ϕt ∈ B, κNt = ℓ}) ∼ Ψ(0) ν(A)ν(B) , (36)

Thus, it follows from (36) that

(at)
dν̃ (A ∩ Φ−t(B)) ∼ g̃d(0)ν(ϕI(A0))ν(ϕJ(A0)) = Ψ(0)ν̃(A)ν̃(B) .

This result extends directly to any finite union of sets A,B as defined in this proof.
Note that the flow Φt is invertible. Thus, if f is supported in E−n, then f ◦Φ−n is supported on

En. Therefore, ∫
M̃
f.g ◦ Φt dν =

∫
M̃
f ◦ Φ−n.g ◦ Φt−n dν ,

since ad(t−n) ∼ adt . □

4.2.1 Main steps of the proof of Theorem 4.2 in the infinite horizon case

To get the idea, it suffices to understand how the proof goes assuming K = {0} and assuming
wt ∈ Zd. The general case follows as in [42, Section 4.1].

Step 1 Recall from Definition 4.1 that A is a set of the form A0 × I ⊂ M̂ with I ⊂ [0, infA0 τ))
and A0 ⊂M . The same holds for B with J instead of I.

Write y = (x, u) ∈ M̂ and note that

ν
(
y ∈ A ∩ {ϕt(y) ∈ B, κNt(y)(x) = wt}

)
= ν(x ∈ A0, T

Nt(y)(x) ∈ B0, u ∈ I, u+ t− τNt(y)(x) ∈ J, κNt(y)(x) = wt)

=
∞∑
n=1

µ(x ∈ A0, T
n(x) ∈ B0, u ∈ I, τn(x) ∈ u+ t− J, κn(x) = wt)

=
1

µ(τ)

∑
n≥0

∫
I
Qn(t, u) du ,
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where

Qn(t, u) := µ
(
A0 ∩ T−nB0 ∩ {κn = wt, τ̃n ∈ u+ t− nµ(τ)− J}

)
.

The message of this equation is: contrary to the discrete time case, τn is now going to play a crucial
role. Instead of the single observable κn, one looks at the joint observable

Ψ̂n = (κn, τ̃n) where τ̃ = τ −
∫
M
τ dµ.

So, we can write

Qn(t, u) = µ
(
A0 ∩ T−n(B0) ∩

{
Ψ̂n ∈ (wt, t− nµ(τ)) + {0} × Ju

})
,

with Ju = u− J .

Step 2 For L large, we split the sum as

ν (A ∩ {ϕt ∈ B, κNt = wt}) = S1(t, L) + S2(t, L) ,

where

S1(t, L) :=
1

µ(τ)

∑
n : |n−t/µ(τ)|≤Lat

∫
I
Qn(t, u) du ,

S2(t, L) :=
1

µ(τ)

∑
n : |n−t/µ(τ)|>Lat

∫
I
Qn(t, u) du .

The reason for this splitting is that S1 will give the precise asymptotics via the LLT for Ψ̂n, while
S2 can be shown to be negligible. More precisely, we obtained

Lemma 4.5 (a) limL→∞ limt→∞ adtS1(t, L) = Ψ(0)ν(A)ν(B),

(b) limL→∞ lim supt→∞ adtS2(t, L) = 0.

Step 3 Item (a) of Lemma 4.5 is a joint LLT, namely

Lemma 4.6 (Joint CLT for the billiard map) a−1
n Ψ̂n =⇒ N (0,Σd+1) as n → ∞, where Σ is

a real positive-definite (d+ 1)× (d+ 1) matrix.

Step 4 Item (b) of Lemma 4.5 uses among other ingredients, a joint Local Large Deviation for Ψ̂.

Lemma 4.7 (Joint LLD for the billiard map) Let U ⊂ Rd+1 be an open ball. Then

µ(Ψ̂n ∈ z + U) ≪ n

ad+1
n

log(2 + |z|)
1 + |z|2

uniformly in n ≥ 1 and z ∈ Rd+1.

Lemma 4.7 is a generalization of LLD for κ obtained by Melbourne, Pène and Terhesiu in [37],
which says that

µ(κn = N) ≪ C
n

adn

log(|N |)
1 + |N |2

uniformly in n ≥ 1 and N ∈ Zd. What matters here is the range: it holds for |N | > an. For N ≥ an
this is a consequence for the LLT for κ (under the map T ). What matters here is the range.
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5 Other approaches beyond Young towers

The Young–tower framework has become a standard tool for proving limit theorems in Sinai billiards
and Lorentz gases, but there are complementary approaches that are powerful in their own right.
We briefly highlight three directions.

Functional–analytic (spectral) methods on anisotropic spaces. A complementary
route is to study the Perron–Frobenius/transfer operator on carefully chosen anisotropic Banach
spaces, proving a spectral gap and then deriving statistical properties from spectral perturbation the-
ory. For planar Lorentz gases this has been developed in a series of works by Demers–Zhang, yielding
spectral decompositions, decay of correlations and linear–response–type stability results [16, 17, 18]
building on previous work of Demers and Liverani [14]. Robustness under perturbations for piecewise
hyperbolic maps—key to billiards with singularities—was established in [14]. More recently, Demers
and Liverani [15] introduces projective cone techniques that streamline Lasota–Yorke–type estimates
for generalized dispersing billiards, giving a flexible path to spectral bounds beyond classical settings.

Kinetic limits and the Boltzmann–Grad program. Another viewpoint replaces long–time
statistical questions by low–density scaling limits, linking the Lorentz gas to kinetic equations. For
the periodic Lorentz gas, the rigorous Boltzmann–Grad limit was obtained in [32], with refined
asymptotics in [33]. This program clarifies how free–path statistics and lattice geometry feed into
kinetic transport. Within this circle of ideas, [34] analyzes superdiffusive behavior in periodic ge-
ometries, highlighting mechanisms tied to long corridors.

Random Lorentz gases and invariance principles beyond Boltzmann–Grad. Be-
yond periodic configurations, one can randomize the scatterers and ask for invariance principles
under different scalings. The work [30] develops an invariance principle for the random Lorentz gas
in regimes that go beyond the classical Boltzmann–Grad scaling, connecting microscopic geometry
to macroscopic Brownian (or superdiffusive) limits.

In short. Spectral/functional–analytic techniques ([14, 16, 17, 18, 15]) provide a direct control of
transfer operators and stability; kinetic–limit methods ([32, 33]) link the Lorentz gas to the Boltz-
mann–Grad program; and random–media results ([30]) extend invariance principles to nonperiodic
settings.

Aperiodic geometries and ergodicity. Non periodic setting are difficult to study. Beyond
periodic arrays, Lenci established ergodicity for aperiodic Lorentz gases: in two dimensions with fi-
nite horizon and mild nondegeneracy, recurrence implies ergodicity, and explicit recurrent aperiodic
examples are constructed [27]. For infinite-horizon geometries and Lorentz tubes, Lenci and Trou-
betzkoy built aperiodic classes that are recurrent, uniformly hyperbolic, and ergodic (with K-mixing
first-return maps). [28].
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[30] C. Lutsko, B. Tóth. Invariance principle for the random Lorentz gas – Beyond the Boltzmann-
Grad limit. Commun. Math. Phys. 379 (2020) 1–44.

[31] H. A. Lorentz. The motion of electrons in metallic bodies. Proc. Amsterdam Acad. 7 (1905)
438–453.
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Ann Inst. H. Poincaré (B) Probab. Statist. 55, 1, (2019) 378–411

[41] F. Pène, D. Terhesiu. Sharp error term in local limit theorems and mixing for Lorentz gases
with infinite horizon. Commun. Math. Phys. 382 (2021), no. 3, 1625–1689

[42] F. Pène, D. Terhesiu. Strong mixing for the periodic Lorentz gas flow with infinite horizon.
Trans. Amer. Math. Soc. 378 (2025): 1619–1679.

35



[43] Ya. Pesin Families of invariant manifolds corresponding to nonzero characteristic exponents
Math. USSR Izv. 10 (1976) 1261–1305.
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